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I. FOREWORD 

The 'Cooperation' exists because you are a 'Cooperator' in keeping up the tradition of sharing information with colleagues, here and in 
many unheralded conversations, correspondence, and shared stocks and clones. The working research information here is shared with the 
understanding that each item is unpublished and is not to be cited in publications without specific consent of the authors. By sharing our 
research information, we contribute to the advancement of biology and to the power of shared technical knowledge. 

Information here is in the form of "notes" and is not "published" in the sense of a refereed journal. Cooperators present brief 
technical notes, updates, mutants, segregation ratios, tables of mapping data, developmental and anatomical information and techniques, 
clones, biochemical functions, and the like. Comprehensive material and analyses are better directed to formal publication. 

More and more cooperators supply notes, tables and figures in electronic form, and this greatly facilitates editing and compiling. 

Following the interesting and valuable Reports, from individual Cooperators and laboratories, note the information sections, 
summaries, and compilations presented in this issue: 

Address List 
Maize Genetics Cooperation - Stock Center 
Maize Genome Database 
Maize Probe Bank 
New Genes - Newly Mapped Genes - New Markers 
Combined Table of SSA Loci 
Working Maps 
Acronyms for Functions 
Physical Maps of the Maize Mitochondrial Master Chromosomes (with thanks to Christiane Fauron) 
Zealand 1996 
Symbol and Author Indexes 

Gifts to the Endowment Fund for support of the Newsletter now total about $100,000. Please see the listing, in the front of this 
issue, of donors whose generosity has made this total grow. We are all grateful for the support of our colleagues and of organizations 
with which we have common interests. Gifts to the Endowment Fund continue to be needed to assure that costs of production are met, and 
are very much appreciated. 

The continuity and support necessary for collecting genetic and molecular information, evaluating it, and preparing gene lists, maps, 
and similar syntheses are made possible only by sustained and ongoing encouragement of this work within the Agricultural Research 
Service. The MaizeDB project advanced, through the efforts of Dr. Jerry Miksche, from a temporary to a regular, ongoing program 
provided by the Curator, Dr. Mary Polacco. We urge you with our strongest enthusiasm to use, assess, and contribute to the database. 

Mary Polacco ingeniously contrived and "dumped" the supplemental Gene List (New Genes and Newly Mapped Genes); the list of New 
Markers; Zealand 95; reference links for ; the Stock List; and author and symbol indexes from MaizeDB, aided by the skillful savvy of Denis 
Hancock and Shirley Kowalewski. Help, advice and ideas also from my colleagues Mike McMullen, who reviewed and helped refine the whole, 
and Pat Byrne and Georgia Davis, who compiled, summarized, and evaluated contel')ts, are warmly appreciated. Shirley Kowalewski 
skillfully made the contents into fine form, twisted diverse electronic sources to suit and interpreted exotic scripts; structured the year's 
literature and indexes, and questioned quality or content, or gave creative advice, at key moments. At University Printing Services, 
Yvonne Ball and the printshop staff again efficiently ensured the job was done promptly and well. 

Details about the 1997 Maize Genetics Conference at Clearwater Beach, Florida, March 13-16, 1997, will be available on the MaizeDB 
Web at the earliest date, and information will be mailed to former attendees in November 1996; others may request the mailing by 
providing their address to Coe. The program and abstracts are provided by Bill Sheridan. The pilot trial for electronic submission and 
'Webification" of abstracts for the 1996 Maize Conference in parallel was largely successful, and will be enhanced for the 1997 
Conference. The Steering Committee for the 1997 Maize Genetics Conference is: · 

Mary Alleman 
Curt Hannah, local coordinator 
Mike McMullen 

Jeff Bennetzen 
Barbara Kloeckener 
Paul Sisco, Chair 

For submission of notes for the next issue (Number 71, 1997), please see details inside the back cover. 

If you wish to subscribe to this Newsletter please use the form in the back of this issue. 

Paul Chomet 
Jane Langdale 
Julie Vogel 

Editor Coe 



ALBANY, CALIFORNIA 
USDA Plant Gene Expression Center 

Mapping of the abphyllocus which regulates phyllotaxy in maize 
--Jackson, D and Hake, S 

In last year's newsletter we described -a new heritable abphyl 
mutation which causes an increase in the size of the shoot apical 
meristem in the coleoptilar stage embryo and a subsequent change 
in phyllotaxy from distichous to decussate in a large proportion of 
mutant individuals (MNL 69:2). We have continued to introgress 
this mutation into different genetic backgrounds, and it acts as a 
single recessive locus. We used bulked segregant analysis 
(Michelmore et al., PNAS 88:9828-9832) to map the locus, with 
much appreciated advice from Mike McMullen (USDA-AAS, 
University of Missouri, Columbia). Plants showing the abphyl phe
notype were outcrossed to 873 (all of the F1 were normal) then 
backcrossed to abphyl, so the F2 segregated 1 :1 mutant: normal 
(heterozygotes). Two pools of DNA from approximately 30 mu
tant and 30 normal individuals, respectively, as well as 873 DNA, 
were digested with Ssn, EcoRI, EcoRV or BamHI and subjected to 
Southern analysis using core RFLP probes. No linkage was found 
with probes from chromosomes 1, 3, 6, 9 or 2L, however two 
probes from 2S, umc6 and umc131, showed very clear differences 
in hybridization patterns between the mutant and normal pools 
with all of the enzymes used. 

We prepared DNA from 30 individual mutant and 30 normal 
plants and used these to get a more accurate map position. 
Probes umc6 and umc 131 detected 1 O and 8 recombinants, re
spectively, from the 60 individuals tested, and since the current 
UMC maize RFLP map shows these RFLP loci to be 35 cM apart 
this is highly suggestive that the locus (symbol abph 1 ) lies 
between them. To confirm this we used a probe, umc34, which lies 
between umc6 and umc131, and failed to observe any recombinants 
in our population, suggesting that abpht probably lies within a 
couple of cM of umc34. We also used a probe from bt (kindly 
provided by Vicki Chandler, University of Oregon) and estimate 
that abph1 is in the order of 8 cM from bt. We are in the process 
of refining these data by mapping relative to other mutants on 2S, 
as well as initiating tagging strategies using stocks carrying 
transposable elements at bt (kindly provided by Vicki Chandler), 
and a new Ac transposition onto 2S, from the Maize Genetics Coop 
Stock Center ( originally from Hugo Dooner, MNL 69: 115). 

Identification of target genes of the KNOTTED1 homeodomaln 
protein by subtractive hybridization 

--Char, BR and Hake, S 

To understand the role the homeobcix gene knottedt (kn1) 
plays in development, we undertook to identify its downstream 
targets. A subtractive hybridization scheme to isolate up-regu
lated target genes was devised, taking advantage of the pattern 
of expression of knt in the dominant Kn1-N2 allele. In this allele, 
knt is ectopically expressed in localized regions of the leaf, usually 
close to veins, whereas in wild-type plants knt expression is unde
tectable in leaves. mRNA from unexpanded leaves of 10-day old 
Kn 1-N2 seedlings was isolated and converted into double
stranded cDNA. Some of this double-stranded cDNA was used to 
construct a cDNA library. First strand wild type leaf cDNA was 
synthesized on mRNA attached to magnetic beads and the result
ing RNA:DNA hybrids denatured to remove the RNA strand. A 
large excess of wild type cDNA attached to the beads was then 
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hybridized to a trace amount of denatured double-stranded cDNA 
made from Kn 1 leaves. After exhaustive hybridization the rena
tured cDNA left in solution was used to make a cDNA library, the 
wild-type cDNA population being removed along with the beads. 
The cDNAs in solution represented unique clones present in the 
Kn 1 leaf cDNA population. The subtracted library was screened 
with a subtracted probe, and in addition, ·fifty random clones 
were picked and analyzed. 

A total of seven different genes were obtained from the two 
approaches. From the library screen, ASA-inducible glycine-rich 

A 

1.0 kb - c87 

ubl 

B 

1.0 kb - c87 

tubulln 

Agure 1. Expression levels of c87mRNA In wild-type, Kn1 and 35S::knl leaves. A. Northern 
blot showing lhe Increase In expression 01 c871n Kn1 leaves as compared to wild-type leaves. 
Expression Is also detectable in merlslem enriched tissue. 10 µg 01 total RNA was loaded In 
each lane. The blot was reprobed with a maize ubiqutin ( ub1) probe as a loading control. B. 
Northern blot of leaf RNA from wild-type, Kn1 and 35S:: kn1 plants probed with a C87 cONA 
probe. Kn1 and 355::knl ( kn trans) leaves show iocreased levels of c87mRNA. 10 µg of total 
RNA was loaded in each lane. The blot was reprobed with a maize tubulin probe as a loading 
control. 



protein (GRP) and CHEM2, a stress-inducible GRP, were ob
tained. The ASA-inducible GRP, also known as MA16, contains a 
consensus RNA-binding motif. From the randomly picked clones, 
five additional groups of cDNAs were isolated, each group com
prising 1 to 2 clones. These included c87, a cDNA showing some 
homology to plant S-like ribonucleases, a cDNA showing homology 
to BnC24, a Brassica napus gene homologous to a human tumour 
gene, breast basic conserved1 (bbct), and 3 cDNA fragments 
which showed no significant homology to any sequences in the 
GenBank database. The two GRPs were also represented in the 
randomly picked clones. 

On Northern blots, c87 showed a substantial increase in ex
pression in Knt leaves over wild type leaves (Figure 1A), showing 
that the subtraction protocol enriched for cDNAs that are more 
abundant in Knt leaves. ASA-inducible GRP and CHEM2 also 
showed increases in expression in Knt leaf tissue, while the other 
genes did not show an increase or were not detectable on RNA 
blots. In addition, c87 showed increased mRNA levels in leaves of 
transgenic maize plants constitutively expressing kn1 (Figure 18). 
Approximately 3 kb of c87 genomic sequence upstream of the 
transcription start site was obtained. A KN1 homeodomain pep
tide bound with low affinity to fragments of the c87 promoter in 
gel retardation assays. Full-length cDNAs for c87 were obtained 
and used to generate probes for in situ hybridization on tissue 
from wild-type and Knt seedlings. c87 mRNA was detected in 
Kn1 leaves but not in wild-type leaves. Localized expression of 
c87 was detected in ears, in structures closely associated with 
stamen primordia, possibly lodicules. In tassels, c87 is localized to 
the L 1 and L2 cell layers on the abaxial side of developing flowers. 
Later in development c87 expression appears as a ring at the base 
of the growing point of each floret. Determination of the map lo
cation of c87 is in progress. 
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Dosage analysis on the teosinte branched1 mutation suggests it is 
an antimorphic dominant mutation 

--Hubbard, L and Hake, S 

Plants homozygous for the teosinte branched1 mutation in 
maize exhibit a severe phenotype of extreme tillering and long lat
eral branches tipped by tassels in upper ear nodes. Previous ob
servations suggest that tb 1-ref has a semi-dominant effect on 
tiller number when heterozygous, displaying a mild tillered pheno
type with no obvious effects on the female inflorescence 
(Schnable, MNL 66:5, 1992). 

Dosage analysis of the tb1 locus was begun to further investi
gate the tbt-ref allele. Crosses were carried out using a line of 
maize obtained from James Birchler (University of Missouri) that 
is carrying a transposition of 18% of the long arm of chromosome 
1 L within chromosome 3L, which we will designate as Tp(1-3). 
Tp(1-3) encompasses the tb1 locus and thus can be used to gen
erate stocks hyperploid for the normal or mutant alleles of tb 1 
(Birchler and Levin, Genetics 127:609-618, 1991 ). A Tp(1-3) 
heterozygote was crossed by tbt-refhomozygotes and the F1 was 
backcrossed by tb 1-ref homozygotes. The resulting material was 
assayed for the presence of tb 1-ref or the normal tb 1 allele by 

linkage to different adh1 alleles. 
Results from the dosage analysis on plants carrying 1 or 2 

doses of normal or mutant tbt alleles show that when tbt-ref allele 
is present at a higher dose than the normal allele, the severe tb1-
ref phenotype is observed (Table 1 ). These results suggest that 
the tb 1-ref allele actively interferes with functioning of the nor
mal tb1 allele and therefore, this mutation should be interpreted 
as antimorphic. These findings are consistent with the observa
tion that this mutation may be semi-dominant. Analyses of the mild 
tillering phenotype in tbl+ relative to +/+ and tb/+/+ (+ repre
senting the normal allele and tb the mutant) are under investiga
tion. 

Table 1. Results from crosses in which the female parent is heterozygous for Tp(1-3) and lb/· 
ref and the male parent is homozygous for /bl-ref. 

lb/lb 
lb!+ 
tb!+I+ 

tbltb!+ 

Se\lllre phenotype' 
9 

9 

Normal phenotype 

14 
13 

'Severe phenotype consists of long lateral branches tipped by tassels in the ear position and 
excessive tillering. 

Note: The stock carrying tb 1-ref allele was obtained from Bill 
Sheridan (University of North Dakota). 

AMES, IOWA 
Iowa State University 

Anther color in BSSS-101 inbred line 
-Zhang, XH and Hallauer, AR 

BSSS-101 line was derived by single-seed descent from the 
Iowa Stiff Stalk Synthetic (BSSS) population after 1 0 genera
tions of self-pollination. BSSS-101 was regarded as a homoge
neous line for breeding purposes. Purple and green anther colored 
plants were observed within BSSS-101 in the breeding nursery in 
1992. In 1992, plants with purple and green anthers were crossed 
to produce the F1 generation. The F2 generation was produced in 
the 1992-1993 winter nursery by self pollination. The back
crosses of F2 generation plants with purple and green anthers to 
the parents with purple and green anthers were produced in 1993. 
Purple and green anther plants within the F2 generation also were 
selfed in 1993 to produce the F3 generation. Purple and green 
anther color parents and the F1 and F2 generations were grown in 
the 1993 breeding nursery. Purple and green anther color par
ents, and F1, F2, F3, and backcross generations were grown in the 
1994 breeding nursery. In each season, individual plants were 
classified for purple and green anther color. Plants that had 
slightly blotched anther color upon emergence from stamens were 
also recorded. The classification of plants with different anther 
color was recorded in each generation at the time of pollen shed. 

When two plants of different anther color were crossed within 
the BSSS-101 line of maize in 1992, the F1 generation exhibited a 
3:1 ratio of plants with purple and green colored anthers in 1993: 
53 plants had purple anthers and 17 plants had green anthers. 
The F2 generation also exhibited a 3:1 ratio: 157 plants with pur
ple anthers and 52 plants with green anther (Table 1 ). In 1994, 
the 3:1 ratio also was observed in F1 and F2 generations: F1 gen
eration had 15 plants with purple anthers and 5 plants with green 
anthers, and F2 generation had 287 plants with purple anthers 
and 93 plants with green anthers. An 8:1 ratio was observed in 
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the F3 generation upon selfing F2 plants with purple anthers (160 
plants with purple anthers and 20 plants with green anthers). For 
plants having green anthers, however, anther color did not segre
gate either in crosses made between plants with green anthers or 
in selfs of F2 plants with green anthers (Table 1 ). The back
crosses of F2 generation plants with purple anther color to the 
parent with purple anthers had only purple anthers. A 1 :1 ratio 
was found in the backcrosses of F2 generation plants with purple 
anther color to the green anther color parent. When F2 generation 
green anther plants were crossed to the green anther parent, 
progeny of this backcross all had green anther color (Table 2). It 
was observed that plants with purple anthers had light-red silks, 
light purple color at base of stem, colorless aleurone, and red cobs. 
Plants with green anthers had green silks, green color at base of 
stem, colorless aleurone, and red cobs. Daily examination of the 
field plants indicated that the purple anthers were affected by 
sunlight. In general, if the anthers were slightly blotched purple 
upon emergence, the anthers later became completely purple after 
exposure to sunlight. 

Table 1. Data for anther color obtained from crosses and selfs of BSSS-101 line in 1992, 
1993, and 1994. 

Ynr ~ Purple Greenan- Tola! .B.a.tiQ 
anther (no. ther(no. 
~ ~ 

1992 BSSS-101 47 26 73 3:1 
1993 Parent (purple in 1992) 73 0 73 

Parent (green in 1992) 0 74 74 
F1 (purple x green cross in 1992) 53 17 70 3:1 
F2 (self of cross in 1992-93) 157 52 209 3:1 

1994 Parent (purple in 1993) 48 0 48 
Parent (green in 1993) 0 30 30 
F1 (purple x green cross in 1993) 15 5 20 3:1 
F2 (self of cross in 1993) 287 93 89 3:1 
F3 (purple anther F2 self) 160 20 80 8:1 
F3 (green anther F2 self) 0 96 96 

Table 2. Data obtained for anther color of backcrosses of BSSS-101 line in 1994. 

~@ eu!llle anlhec lm1, 111an1si ~!ll!:!! a•lhe[ {DQ l!laalSl l2lfil .B.a.tiQ 

PxP 93 0 93 
PxG 54 50 104 1:1 
GxG 0 83 83 

•p refers to plants with purple anthers. G refers to plants with green anthers. 

Anthocyanin pigment is synthesized in the aleurone layer of the 
maize endosperm, in the embryo, and in many vegetative plant or
gans, including leaf, stem, anthers, glumes of the cob, tassel, and 
coleoptiles (Coe et al., Corn and Corn Improvement pp. 81-258, 
ASA, 1988). Genes that affected different plant tissues were 
determined and given gene designation. The at allele causes color
less aleurone, green or brown plant, and brown pericarp with pt
RP. The a2 allele is similar to al, but a2 gene has red pericarp with 
pt-RP. The a3 allele is a recessive intensifier of expression of Rt 
and Bt in plant tissues. Some genes affect aleurone and embryo 
color; beta determines aleurone and plant color and red pericarp; 
bzt modifies purple aleurone and plant color to either pale or red
dish brown, and anther color is yellow-fluorescent; bz2 is like bzt, 
but has anthers that are not fluorescent; the C1 gene determines 
colored aleurone, ct colorless, CH dominant colorless, ct-p pig
ment inducible by light; the c2 gene has colorless aleurone, reduced 
plant color, and reduced chalcone synthase, and c2- ldf is a 
dominant inhibitor; the p1 gene confers red pigment in cob and 
pericarp; smt, salmon silk color with P1-RR, and brown with P1-
ww; and the r1 gene regulates the anthocyanin pathway, dominant 
Rt (S element) confers function in aleurone; dominant represented 
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by R1-r or r1-r (P element) confers function in anthers, leaf tip, 
and brace roots (Coe et al. ibid; Coe, MNL 68:157-184, 1994). 

In this study, the F1 generation had a 3:1 ratio for purple and 
green anthers. Anther color could be due to one pair of allelic 
genes and a modifier gene. The allele that controls purple anthers 
is completely dominant to the allele that controls green anthers. 
The modifier gene plays a role in the heterozygous condition only, 
based on the data of the backcrosses and on effect of anthers un
der sunlight. 

The purple anther color genotypes may be of three kinds; c1-n, 
c 1-p, and r-r, according to phenotype of plants, in which it had 
purple anthers, yellow pollen, light red silks, colorless aleurone, and 
red cob. The green anther genotypes can be just one kind, r-g, ac
cording to effects on colorless aleurone, red cobs, yellow pollen, 
and green silks of plant (Coe et al., ibid). The gene controlling an
ther color could be at the R locus or in the R region. The four ba
sic types, R-r, R-g, r-r, r-g, designated by Emerson (Cornell 
Univ. Agric. Exp. Stn. Mem. 39. 1921 ), are symbolized according to 
effect on aleurone color (R vs. r) and on anther color (r, red vs. g, 
green). Hence, we conclude that the purple anther genotypes 
could be r-r. 

. The purple anthers became darker after exposure to sunlight, 
based on the blotched purple anthers that emerged from the sta
mens. A modifier gene of anther pigment may be pl-Bh, which 
leads to variegated pigment in virtually all tissues of the plant, in
cluding the kernel, an organ not pigmented by other pl alleles 
(Cocciolone and Cone, Genet. 135:575-588, 1993). The color at 
the base of the stem and silks of plants could be a linkage effect 
with anther color in the BSSS-101 line. 

One pair of alleles should have the same anther color in the F1 
generation of the cross of homozygous plants. The F1 generation, 
however, had a 3:1 ratio for plants with purple and green anthers. 
Anther color did not segregate when the purple anther parent was 
selfed. This suggested that some traits related to anthocyanin 
pigment were not homozygous or were partially homozygous in 
some plants and that there was a modifier gene that had an inter
action in the case of heterozygotes. Because of segregation within 
the F1 generation, larger population sizes will be needed. 

Based on these ambiguous results, we will increase the popula
tion size of the F1 and the F2 generations and control the environ
ment in the crossing and selfing of plants. The genotypes of each 
generation will be tested with appropriate genetic tester stocks 
and by using isolation to determine which genes controlled the 
anther color of BSSS-101 plants. 

Genetic analysis of su1-R2412, an allele of su1 with an intermedi
ate phenotype 

--James, M 

Su1 codes for a starch debranching enzyme that is active dur
ing starch biosynthesis (James et al., Plant Cell 7:417-429, 
1995). Mutant su1-Ref kernels accumulate sugars and the water
soluble polysaccharide phytoglycogen during development, and 
have a shrunken and overall translucent appearance in the mature 
dried state. Many su1 alleles have been identified, including some 
that appear near-normal, or that have a phenotype intermediate to 
wild type and sut-Ref. I am investigating one of these intermedi
ate alleles, sut-R2412, which arose in a Mutator background. 
When homozygous, su1-R2412 results in a mildly wrinkled and 
translucent kernel crown, while the base of the kernel appears 
normal. This phenotype was observed in less than the expected 



Mendelian ratios following the self-pollinations of heterozygotes. 
When su1-R2412 is combined with su1-Ref, an intermediate phe
notype results, in which the kernel is slightly shrunken and translu
cent on the periphery, especially in the crown. This suggests that 
su1-R2412 has a modulating effect on su1-Ref. 

Because su1-R2412 was generated in a Mutator background, 
the mutation is likely due to the insertion of a Mu element at the su1 
locus. To test for the reversion of su1-R2412 to wild type due to 
Mu element excision, approximately 700 su 1-R2412/su 1-Ref 
plants were pollinated by su 1-Ref testers (Silver Queen) in an 
isolation plot in the 1994 summer nursery. Silver Queen also is ho
mozygous for y1, which was used in subsequent analyses as a con
tamination marker. The resulting ears segregated for the stan
dard sugary and intermediate sugary phenotypes, but also had 
many starchy kernels, suggesting a high rate of reversion of su1-
R2412 to wild type. The frequency of this putative reversion was 
calculated to be approximately 2.4%. This reversion frequency is 
higher than that calculated for another allele of su 1, su 1-
R4582::Mu1, by approximately 104 . 

To test whether the starchy kernels represented stable re
version events, 36 starchy kernels were planted and self-polli
nated in the 1995 summer nursery; in addition, 1 0 kernels that had 
an intermediate sugary phenotype also were planted. 25 plants 
derived from the starchy kernels produced ears that segregated 
for both su1 and y1; however, these ears contained both the stan
dard sugary and intermediate sugary phenotypes, indicating that 
su 1-R2412 was still present. This suggests that these 25 "re
vertant" kernels may have been starchy as a result of suppression 
of the mutant phenotype, as described by Barkan and Martienssen 
(PNAS 88:3502-3506, 1991 ), rather than as a result of the ex
cision of a Mu element from the su1 locus. The remaining 11 plants 
from starchy kernels produced ears that segregated for su 1, but 
not y1, indicating that these starchy kernels most likely resulted 
from contaminating wild type pollen. All 1 0 plants derived from 
the intermediate sugary kernels (presumably su 1-R2412/su 1-
Re~ produced ears that contained from 25% to 50% starchy 
kernels, in addition to both sugary phenotypes; as expected, each 
ear contained approximately 25% kernels with the standard su1 
phenotype (presumably su 1-Ref/su 1-Re~. Thus, one or two 
doses of su1-R2412 were able to confer either an intermediate 
sugary or a normal kernel phenotype. 

DNA gel blot analyses with EcoRI and BamHI of populations 
segregating 1:1 for su1-R2412 showed a RFLP of approximately 
2 kb that cosegregated with the su1-R2412 mutant allele. PCR 
and nucleotide sequence analyses localized this polymorphism to 
the 5' leader region of su1. Experiments are in progress to inves
tigate 1) the presence and identity of a possible Mu element in
sertion in this 5' leader region; and 2) the molecular basis for the 
starchy "revertant" kernels, including possible correlations of the 
methylation status of this region or element with the mutant or 
wild type phenotype. 

Three putative Mutator-induced alleles of bm4 
--Robertson, DS 

As a result of studies conducted on Mutator-induced Bf1 mu
tants (Bf1-Mu), three bm4 mutant alleles at the bm4 locus were 
found. All Bf1-Mu mutants produced in these studies were se
lected against the Bf1 -R allele (mutant phenotype - homozygous 
seedlings, and anthers of heterozygous or homozygous plants, flu
oresce blue under U.V. light). Each of the original Bf1-Mu isolates 

was of the genotype Bf1-Mu/Bf1-R. These original isolates (214 
total) were crossed as females to a standard line (bf1+/bf1+), 
resulting in progeny plants of the genotypes Bf1-Mulbf1+ and 
Bf1-R/bf1+. Plants from the progenies of thirty-eight of the 
isolates, which had been outcrossed to standard, were crossed 
reciprocally to Bf1-R Bf1-R stocks, as a first screen to deter
mine if any of these isolates might involve deletions. If a deletion 
was involved, about half of the plants, when outcrossed as males, 
might have a reduced frequency of Bf seedlings in their outcross 
progenies. Whereas, these same plants, outcrossed as females, 
might have about 50% Bf seedlings or less in their outcross pro
genies. If less, however, the female outcross progenies should have 
more Bf seedlings than the male outcross progenies. Twenty
seven of the isolates tested showed this pattern of inheritance 
and were tested further in an attempt to obtain additional evi
dence that would support the assumption that a deletion was in
volved. 

The putative bm4-Mu mutants occurred in the tests of three 
of these isolates, Bf1-Mu-044-4, Bf1-Mu-046-6 and Bf1-Mu-
546-5. Twenty kernels were planted from the ears of the plants 
that had reduced transmission of the Bf1-Mu homolog through the 
pollen in the reciprocal crosses with homozygous Bf1-R stocks. 
Two genotypes are expected in the progeny plants from these fe
male outcrosses: Bf1-Mu/Bf1-R and bf1+/Bf1-R. If plants of 
the former genotype were pollinated by homozygous bm4-R 
plants, and if the Bf 1-Mu event was a deletion of sufficient size to 
include the dista.I bm4 locus, bm plants would be expected to seg
regate in the progeny of this cross. The test involving the Bf 1-
Mu-044~4 isolate resulted in seven out of nine progenies that 
segregated for bm plants. The expected genotypes in these seg
regating progenies are Bf1-Mu/bf1+ bm4-R and Bf1-R 
bm4+/bf1+ bm4-R. The former genotype would result in bm 
plants with Bf anthers, if Bf 1-Mu-044-4 is a deletion that in
volves both the bf1 and bm4 loci. The latter genotype would result 
in green plants. A total of 18 bm plants were found in these seven 
progenies. There are other possible explanations for the results 
from the reciprocal crosses and the bm4 test other than a dele
tion that involves both the bf 1 and bm4 loci. There are several 
combinations of two or more simultaneous events induced by the 
Mutator system that could account for these observations. For 
example, the Bf1 mutant phenotype could be caused by the inser
tion of a Mu element at this locus and the bm4 phenotype could be 
due to a Mutator-induced deletion of this locus. Another possibil
ity is that the Bf1 phenotype is the result of a deletion of this lo
cus and the bm4 phenotype is the result of an insertion mutation. 
Perhaps both the Bf1 and bm4 phenotypes were the result of the 
insertion of two different Mu elements and a Mutator-induced 
deletion, which occurred in the proximity of these loci, but did not 
include either of them. Because multiple Mutator~induced alter
ations in one egg involving a short chromosomal region are highly 
unlikely, the simple explanation of a deletion involving both loci is 
the most reasonable, until proven otherwise. 

The test of Bf1-Mu-046-6 resulted in one family with one bm 
plant out of five outcross progenies tested. Although nine out
cross progenies of Bf1-Mu-546-5 were grown, none segregated 
for bm plants. 

The bm plants from the tests of the first two isolates were 
pollinated by standard plants, resulting in progeny plants of the 
following genotypes: Bf1-Mu/bf1+ bm4+ and bft+ bm4-Rlbf1+ 
bm4+. Plants with Bf anthers, the former genotype, were recip-
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rocally crossed to homozygous Bf1-R plants to determine if the 
same results were obtained as when the isolate was first tested in 
reciprocal crosses with homozygous Bf1-R plants. 

In five out of six reciprocal outcross tests of the Bf 1-Mu-
044-4 isolate, the results were close to the original reciprocal 
outcross tests (average values: male outcross progenies 2.04% 
Bf seedlings and female outcross progenies 37.66% Bf 
seedlings). The progeny of one of the bm plants of this isolate, 
however, did not give results that duplicated those of the original 
reciprocal outcross test. None of the plants gave results (Table 
1) that approach those observed in the original or second recipro
cal outcross tests of this isolate. Also there was no consistent 
pattern of inheritance seen for the six plants tested. They vary 
with respect to the percentage of Bf seedlings in both the male 
and female outcross progenies. In the progenies of all but one 
plant (#2) there are more Bf seedlings in the male crosses than 
the female crosses. This is not a result expected if a deletion were 
present. 

Table 1. Results of seedling tests of reciprocal crosses of the individual plants from the out
cross progeny of the first putative bm4-Mu mutant (derived from the Bft-Mu-044-4 isolate). 

.Esn11ilg MCtUH.UJ&- Halo crosses 
Plant % % 

no. + Bf Total Bf + Bf Total Bf 

2 43 4 47 8,51 67 1 68 1.47 
3 24 15 39 38. 46 19 12 31 38.71 
4 18 19 37 51.35 1 53 54 98.15 
5 44 10 54 18.52 40 10 50 20.00 
6 37 6 43 13.95 36 15 51 29. 41 
7 37 10 47 21.28 23 31 54 57 .41 

Total 203 64 267 23.97 186 122 308 39 .61 

Total 
less #4 185 45 230 19,57 185 69 254 27.17 

These results suggest that the bm plant crossed with stan
dard had a different origin than the rest of the bm plants of this 
isolate. If the Bf1-Mu/Bf1-R plant pollinated by the homozygous 
bm4-R plant had an active Mutator system, which is very likely, 
there is the possibility that it could have produced an egg carrying 
a Mutator-induced bm4-Mu mutant in the homolog with the Bf1-R 
allele. When this egg was fertilized by a sperm with the bm4-R 
allele, a bm plant with the genotype Bf1-R bm4-Mu/bf1+ bm4-R 
would result. A bm plant that had this origin, when pollinated by 
standard pollen, would have progeny plants of the following two 
genotypes: Bf1-R bm4-Mu/bf1+ bm4+ and bf1+ bm4-Rlbf1+ 
bm4+. Plants of the former genotype would have Bf anthers, and 
when crossed reciprocally to Bf 1-R Bf1-R plants would not be 
expected to give frequencies of Bf seedlings observed in the 
original tests of the Bf 1-Mu-044-4 isolate because they do not 
carry the putative deletion. Such is the situation observed in 
Table 1. The erratic transmission, however, observed in this table 
would not be expected if a simple insertion mutant was responsible 
for the bm4-Mu allele. (See below for a discussion of this and 
similar patterns of transmission exhibited by the other two puta
tive bm4-Mu mutants.) 

The isolate Bf1-Mu-046-6 probably does not carry a deletion 
that includes the bm4 locus, because only one bm plant was found 
in the bm4 test. Further, when plants from the outcross of this 
isolate with standard were tested in reciprocal crosses with ho
mozygous Bf1-R plants (Table 2) the original transmission pat
tern of Bf seedlings was not observed (i.e., 46.10% Bf seedlings 
in the female outcross progeny and 27.04% Bf seedlings in the 
male outcross progeny). If the Bf1-Mu-046-6 is not a deletion, 
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Table 2. Results of seedling tests of reciprocal crosses of the individual plants from the out-
cross progeny of the second putative bm4-Mu mutant (derived from the B/1-Mu-046-6 iso-
late). 

Eszm~Jg ,r.suuiaJ5 tii1lf2 '-:1:SiUHU!& 
Plant % % 

no . + Bf Total Bf + Bf Total Bf 

1 47 8 55 14.55 ---------
2 14 8 22 36.36 26 18 44 40.91 
4 51 0 51 0,00 53 0 53 0.00 
5 31 11 42 26 .19 22 17 39 43 .59 
6 18 7 25 28.00 48 19 67 28, 36 
8 25 28 53 52.83 29 22 51 43,14 
9 27 17 44 38, 64 25 30 55 54.55 

10 18 5 23 21.74 26 15 41 36. 59 

Total 231 84 315 26, 67 229 121 350 34.57 

Total 
less #4 180 84 264 31.18 176 121 297 40.74 

which includes the bm4 locus, how is the occurrence of this one bm 
plant explained? It could have occurred in the same manner as the 
atypical bm plant in the test of the Bf1-Mu-044-4 isolate. The 
reciprocal crosses of Bf1-R bm4-Mu-046-6/bf1+ bm4+ plants 
to homozygous Bf1-R plants show an erratic transmission pattern 
similar to that of the bm4-Mu mutant from the tests of the Bf1-
Mu-044-4 isolate . 

The third putative bm4-Mu mutant resulted from a different 
crossing procedure than the former two. A plant of the putative 
genotype Bf1-Mu-546-5/bf1+ [from the cross of the original 
isolate (Bf1-Mu-546-5/Bf1-R} by a plant from a standard line] 
was pollinated by a plant heterozygous for the A-B translocation 
TB-9Lc, which involves most of the long arm of chromosome nine. 
The same plant, which was pollinated by TB-9Lc, was outcrossed 
as a male to a homozygous Bf 1-R plant. This cross was made to 
determine if the plant pollinated by the TB-9Lc stock carried the 
putative deletion, which the results of the original reciprocal cross 
of this isolate to homozygous Bf1 -R plants suggested might be 
present. In the original test, the male outcross progenies had 
27.93% Bf seedlings. In the outcross test of the plant pollinated 
by TB-9Lc, 30.45% of the seedlings were of the Bf phenotype. 
On the surface these two percentages appear to be reasonably 
close. However, the former percentage was statistically different 
from a 1 :1 ratio at the one percent level (n = 111 ), while the latter 
was not significantly different from a 1 :1 ratio at the five percent 
level (n = 13). Thus, there was a distinct possibility that the plant 
pollinated by TB-9Lc was not heterozygous for Bf 1-Mu-546-5, 
but was instead heterozygous for the Bf1-R allele. Because of the 
small size of the outcross progeny in this test (n = 13) and be
cause the chi square value was close to that expected for signifi
cance at the five percent level, the progeny of the cross with TB-
9Lc was tested further to determine if this plant was heterozy
gous for Bf1-Mu-546-5. Two Bf seedlings occurred in the 
progeny of this cross, which were transplanted to the field. Both 
of these plants had the phenotype expected for hypoploid TB-9Lc 
plants (i.e., short plants with narrow leaves, rudimentary tassels 
that only occasionally extrude anthers that shed no pollen, and 
small ears, which in most plants produce kernels when pollinated). 
Unexpectedly, these two plants had the brown midrib phenotype. 
Because there is no other bm mutant known on the long arm of 
chromosome 9, these plants probably are hemizygous for a 
Mutator-induced mutant at the bm4 locus. Only 'one of these 
plants produced an ear and it was pollinated by a standard plant. 
If the original plant pollinated by TB-9Lc was heterozygous for 
the Bf 1-Mu-546-5 allele, all progeny plants of this cross were ex
pected to be of the genotype Bf1-Mu-546-5/bf1+, and should 



have shown a reduced frequency of Bf seedlings in progenies from 
the male outcrosses to homozygous Bf1-R plants. The results 
(Table 3) do not duplicate the Bf1 -R test results of the original 
isolate. Thus, the hypoploid plant probably does not carry the 
Bf1-Mu-546-5 allele. This would mean that the plant pollinated 
by TB-9Lc was heterozygous for the Bf1 -R allele and the hy
poploid Bf seedlings were hemizygous for this allele. The most 
logical explanation for the origin of the bm phenotype is that it 
was the result of a Mutator-induced bm4 mutant on the homolog 
that carried Bf1-R in the original Bf1-Mu-546-5/Bf1-R isolate 
that was pollinated by standard. The homo log with Bf 1-R and the 
closely linked putative bm4-Mu mutant allele had an erratic 
transmission pattern (Table 3) similar to that of the previous two 
bm4-Mu mutants. Note: the latter mutant has not been confirmed 
as being a mutant at the bm4 locus. It, however, must be on the 
long arm of chromosome nine and as yet no other mutant with the 
bm phenotype has been described on this arm. This fact along 
with its erratic transmission pattern, which is similar to those ob
served for the other two bm4-Mu mutants, strongly suggests 
that it is a bm4-Mu mutant. 

Table 3. Results of seedling tests of reciprocal crosses of the individual plants from the 
outcross progeny of the third putative bm4-Mu mutant (derived from the B/1-Mu-546·5 
isolate). 

E~·ma.l c ~ca~:;u:a Ha 1 ~ SiCIHHHHi 
Plant % % 

no. + Bf Total Bf + Bf Total Bf 

1 20 42 62 67.74 21 21 42 50 .00 
2 16 40 56 71.4) 18 14 J2 43.75 
3 18 6 24 25.00 31 31 62 50 .oo 
4 10 17 27 62.96 23 23 46 50.00 
5 23 13 36 36 .11 ----------
6 17 18 35 51.43 
7 12 8 20 40.00 21 21 42 50.00 
8 20 6 26 23.08 17 34 51 66.67 
9 13 12 25 48.00 20 23 43 53,49 

10 17 7 24 29.17 28 20 48 41.67 
la 18 8 26 30.77 16 19 35 54.29 
2a 19 12 31 )8.71 18 18 36 50 . 00 
3a 16 8 24 33.33 17 24 41 58.54 
4a 16 10 26 38.46 28 27 55 49 .09 
5a 25 9 34 26.47 ------------
6a 16 7 23 30.43 23 23 46 50.00 
7a 25 16 41 39.02 18 24 42 57.14 
Ba 23 6 29 20.69 21 21 42 50.00 
9a 9 1 10 10.00 29 8 37 21.62 

lOa 15 11 26 42. Jl 27 18 45 40.00 

Total 348 257 605 42.48 376 369 745 49.53 

Chi square tests for heterogeneity of the female and male out
cross progenies in Tables 1, 2, and 3 were all significant at the one 
percent level. Why was this erratic transmission pattern ob
served for all three of these mutants? It would suggest that 
these Mutator-induced mutants at the bm4 locus must have in
volved more than simple insertion mutations. Probably they were 
the result of more complex changes that happened to involve this 
locus and resulted in the mutant bm phenotype at the same time. 

The following are a few unanswered questions about the re
sults reported above: Is it just coincidence that three bm4 mu
tants derived from different Bf1-Mu isolates happen to have er
ratic transmission patterns? Could it be that there is something 
involved in the induction of the Bf1-Mu isolates that is responsible 
for this unusual behavior of a bm4 mutant, when a mutation occurs 
at this locus in these stocks? Would bm4 mutants that were in
duced directly by the Mutator system (i.e., were not derived from 
a Bf 1-Mu stock) show the erratic transmission patterns observed 
for the mutants in this report? What mechanism is responsible 
for the transmission pattern of these mutants? 

It should be pointed out that the results reported here are 
based on the transmission, not of the mutant bm4-Mu allele, but on 

the transmission of the closely linked Bf1-R allele. All plants 
tested had the putative genotype of Bf1-R bm4-Mulbf1+ bm4+ 
and, thus, the transmission of the bm4-Mu allele would be ex
pected to closely approximate that of the Bf1-R allele. There re
mains the possibility, however, that some kind of recombination 
event is taking place that eliminates the bm4 mutant allele from 
the gametes that function and at the same time is responsible for 
the erratic transmission of the Bf1-R allele. This possibility could 
be tested by crossing sibling plants from those used for generat
ing the data reported in Tables 1, 2, and 3 with plants homozygous 
for both Bf 1-R bm4-R and simultaneously scoring the progenies 
for both the Bf and bm phenotypes. Another test could be made 
by self-pollinating Bf plants from the progenies of the reciprocal 
crosses of the putative Bf1-R bm4-Mu/bf1+ bm4+ plants. Most 
of the progenies from these selfs should segregate for bm plants, 
if no crossing over between the bf 1 and bm4 loci had occurred. 

I will gladly supply seeds to anyone who is interested in analyz
ing these mutants further. 

The P locus in teosinte 
--Zhang, P and Peterson, T 

The P gene controls phlobaphene pigment synthesis in maize 
floral organs, most notably kernel pericarp and cob. To under
stand the molecular evolution of this regulatory gene, we are in
vestigating the P gene in the maize relative teosinte. Using mate
rials supplied by John Doebley, we have found apparent visible P 
gene expression in teosinte as a faint brown color in the tassel 
glume margin. It was previously reported by Ed Coe that the 
brown color of maize tassel glume margins was correlated with the 
P-specified red cob trait. Further evidence for a P gene in 
teosinte has been obtained by Southern hybridization, PCR, and 
sequencing. The Myb-homologous DNA binding domains of the 
maize and teosinte P genes are highly conserved. Our long-term 
interest is in how the tissue-specific expression of the P gene was 
affected by the marked changes in floral organ morphology which 
occurred in the development of maize from teosinte. 

Trans-factors affecting P-wrexpression: Ufoand sm 
--Chopra, S and Peterson, T 

The maize P-wrgene specifies white (colorless) pericarps and 
red cob glumes, and we have previously analyzed the structure and 
expression of P-wr (MNL 69:9, 1995). We have recently begun 
the analysis of other factors which affect P-wr expression, 
including Ufo (Unstable factor for orange; D. Styles) Ufo is a 
dominant factor which intensifies P-wr pigmentation in husks and 
cob glumes, and also expands the tissue-specific distribution of 
P-wr pigmentation to the kernel pericarp and vegetative parts of 
the plant. Northern blot analysis shows that, compared to P-wr 
and P-rr plants, P-wr Ufo plants have much higher levels of C2, 
CH/1, and A 1 transcripts in young silks and husks. Because the 
Ufo seeds provided by Dr. Styles also carried sm (salmon silks), 
further testing is required to determine whether the 
transcriptional effect is in fact due to Ufo or sm. 

The P-wrgene contains a unique 3' end encoding a putative zinc 
finger domain 

--Chopra, S and Peterson, T 

While looking for the reason for the unique cob-glume expres
sion pattern of P-wr, we found that the transcribed and trans-
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lated 3' end of the P-wr cDNA is comprised of a 21 0 bp insertion 
relative to P-rr (although without any notable features of a 
transposable element insertion). Southern blotting shows that 
this sequence is found only in P-wr genotypes. The unique P-wr 
sequence encodes a cysteine-rich carboxy-terminal domain similar 
to the zinc finger or metal binding domains of the type 
CX1 CX7CX2C (C = Cysteine, X= any amino acid. Subscript shows 
number of residues). This motif also contains phenylalanine and 
leucine residues which are commonly found in zinc finger domains. 
To our knowledge P-wr is the first example of a gene encoding a 
protein with both a Myb DNA binding domain and a single zinc-fin
ger domain. 

AMES,IOWA 
Iowa State University 
JOHNSTON, IOWA 
Pioneer Hi-Bred 

Analysis of the P-rr promoter in transgenic maize 
--Li, X; Sidorenko, L; Tagliani, L; Chopra, S; Bowen, B and 
Peterson, T 

The maize P-rr gene encodes a myb-like transcription activa
tor which activates the C2, CH/1, and A 1 genes to produce a red 
phlobaphene pigment in floral tissues, such as mature cob glumes, 
pericarps, and husks. To characterize the tissue-specific activity 
of the P-rr promoter, we produced transgenic maize plants 
carrying different segments of the P-rr promoter fused to the 
GUS reporter gene. Plasmid construct P1 .0b::GUS, which 
contains the P-rr region from -1252 to +352 relative to the 
transcription start, produced 96 stable callus events and 714 
transgenic plants. The majority of these plants expressed GUS 
specifically in pericarps, husks, and silks; GUS activity was not 
detectable in endosperm, embryo, and pedicel, or vegetative 
tissues of mature plants. Interestingly, GUS was expressed 
specifically in transgenic anther wall. To our knowledge there is no 
previous report of P-rr expression in these cells. With the 
exception of the anther wall expression, the majority of transgenic 
plants demonstrated floral-specific GUS expression pattern 
similar to the pattern of P-rr. In conclusion, the 1.5 kb fragment 
contains the elements required for floral-specific expression of 
the Pgene. 

We also generated 12 stable callus lines and 76 plants for con
struct Pb::GUS (-233 to +326), and 15 stable callus lines and 94 
transgenic plants for construct P1 .2b::GUS (5' 1.2- kb Sa/I 
fragment fused to the basal plasmid Pb::GUS). Interestingly, 
77% and 54% of transgenic TO stable transgenic maize trans
formed with the P1 .0b::GUS or P1 .2b::GUS, respectively, ex
pressed GUS in their floral tissues. lri contrast, only 18% of 
transgenic Pb::GUS plants expressed GUS in floral tissues. In 
conclusion, the P1 .0 and P1 .2 fragments not only enhanced Pb 
strength in driving expression of the reporter gene in transiently 
assayed suspension cells and pericarps (X. Li et al., MNL 69:9, 
1995), but also boosted tissue-specific Pb activity in stable 
transgenic maize plants. The pattern of tissue specific expression 
in plants transformed with P1 .2b::GUS was more variable com
pared to those transformed with P1 .0b::GUS. Occasionally, only 
parts of glumes, husks, and silks of P1 .2b::GUS showed GUS blue 
staining, unlike the uniform GUS expression in transgenic plants 
containing the P1 .0b::GUS constructs. Perhaps, the irregular ex-
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pression of P1 .2::GUS may be due to the presence of the 5' 1.2 
kb San fragment which is a site of epigenetic modification in the 
P-pr allele as demonstrated by Das and Messing (Genetics 
136:1121-1141, 1994) and Lund et al. (Plant J. 7:797-807, 
1995). 

The Pb, P1 .Ob, and P1 .2b constructs above all contain the 
maize Adh1 intron in front of the GUS gene to boost expression. 
Three constructs which were similar, but without the Adh1 intron, 
produced only a few GUS positive plants. These constructs with
out the Adh1 intron also had very low activity in transient assays. 
These results suggest that transient assays should be used as a 
preliminary test of promoter activity before generating stable 
transgenic maize. 

BALTIMORE, MARYLAND 
Carnegie Institution of Washington 

5pm element: Significance of multiple TnpA binding sites 
--Raina, R and Fedoroff, N 

The maize Suppressor-mutator (Spm) transposable element 
encodes two proteins, TnpA and TnpD, which are necessary and 
sufficient for transposition (Masson et al., Plant Cell 3:37, 1991). 
TnpA affects the epigenetic state of the Spm element by 
activating the methylated inactive Spm promoter (Schlappi et 
al., Cell 77:427, 1994). TnpA is a DNA-binding protein (Gier! et 
al., EMBO J. 7:4045, 1988) and there are multiple copies of its 
12-bp binding site located at the element's 5' and 3' ends. 
However, the role of TnpA and TnpD in the transposition of Spm 
is not understood. We have previously reported that TnpA binds 
to the ends of the element in a concentration-dependent manner 
(Raina and Fedoroff, MNL 69:13, 1995). We hypothesize that once 
TnpA is bound to its binding sites, higher order protein-protein 
interactions bring the ends of the element together. Here we 
analyze the effect of the presence of multiple TnpA binding sites 
on binding of TnpA and interaction of DNA-TnpA complexes. 

To assess whether the presence of multiple binding sites at 
the ends of the Spm element is important for the formation of 
higher order complexes, we studied the binding of TnpA to various 
deletion derivatives of the 5' -end of the element. The derivatives 
have 1, 2, 3, 6 and 9 binding sites. Over-expression and purifica
tion of TnpA in £. coli have been described previously (Raina and 
Fedoroff, MNL 69:13, 1995). Target DNAs with 1 to 9 binding 
sites (except for one with 2 binding sites) were generated by ex
onuclease Ill deletions of the 5'-end of the element (Raina et al., 
Proc. Natl. Acad. Sci. USA 90:6355, 1993). DNA fragments with 
2 binding sites were generated by cloning an oligonucleotide cor
responding to TnpA binding sites 2 and 3 at the 5'-end of the el
ement in the £coRV site of bluescript KS+. The fragment was 
released by digestion with enzymes Bamt-11 and Pvul. 

The effect of multiple binding sites on binding of TnpA to 
DNA was studied by a band-mobility shift assay. The results are 
shown in Figure 1. The same amount of labeled DNA and protein 
has been used in all the experiments. The DNA was labeled at 
both the ends in all cases except for the fragment with 2 binding 
sites, in which only one end was labeled. The results of this experi
ment show that the binding of TnpA increases similarly with the 
protein concentration for all fragments tested. As the pro
tein:DNA ratio increases, more and more sites are occupied 
(Figures 1 and 2), giving bands of larger size. We have not ob 
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Figure 1. Band shift assay using deleUon derivatives of 5'-end of the element and TnpA. 
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served stronger binding of TnpA to a tail-to-tail dimeric binding 
site than a monomeric binding site, as reported previously (Figure 
1 a, b; Trentmann et al., Mol. Gen. Genet. 238: 21 O, 1993). 
Fragments containing 1 and 2 binding sites give one and two 
slower-migrating complexes, respectively (Figure 1a, and b). 
These complexes correspond to one or two sites occupied by 
TnpA. However when a DNA fragment with 3 binding sites is used 
in these experiments, we observe more than the expected 3 bands 
(Figure 1 c). When DNA with more binding sites is used in these 
experiments, we find that a higher fraction of the shifted DNA is 
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Figure 3. Graphical representation of fraction of shifted DNA in each complex. A 
representative complex size is shown in Figure 1 e. 

in large complexes and this fraction increases with increasing num
bers of binding sites per DNA molecule (Figure 3). The large 
complexes probably arise by intermolecular protein-protein inter
action between the TnpA molecules already bound to DNA. 

Because we see no evidence of dimerization of TnpA with a 
fragment containing a single binding site, we propose that the 
dimerization domain of TnpA is involved in the formation of inter
molecular TnpA-DNA complexes. This hypothesis is supported by 
the observation that fraction of shifted DNA in higher order 
complexes increases with increasing numbers of TnpA binding 
sites/molecule (Figure 3). We therefore propose that the dimer
ization domain of TnpA is involved in protein-protein interactions 
between TnpA molecules already bound to DNA and that it func
tions to bring the ends of the element together during transposi
tion. 

A highly sensitive plant hybrid protein assay system based on the 
Spm promoter and TnpA protein for detection and analysis of 
transcription activation domains 

--Schlappi, M and Fedoroff, N 

TnpA is a multifunctional DNA binding protein encoded by the 
maize Suppressor-mutator (Spm) transposable element. TnpA is 
required for transposition and is both a repressor of the un
methylated Spm promoter and an activator of the methylated 
promoter. While analyzing the protein using a yeast GAL4-based 
hybrid system in transiently transformed tobacco cells, we found 
that TnpA represses the > 10-fold transcriptional activation ob
served when the GAL4 DNA binding domain is used alone. By con
trast, a 33- to 45-fold activation of the Spm promoter was ob
served when the VP16 activation domain was tethered to TnpA. 
TnpA binding sites, but no TAT A box, were required for tran
scription activation. Among the TnpA deletion derivatives tested, 
those retaining the coding sequences for the DNA-binding and 
protein-dimerization domains gave the highest level of transcrip
tion activation when fused with the VP16 activation domain. As 
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shown below, the TnpA gene and TnpA binding sites in the short 
Spm promoter therefore provide a novel, highly sensitive single
hybrid system for identifying and studying plant transcription 
activation domains in plant cells. 

The full-length TnpA coding sequence and 5'-and 3'-terminal 
deletion derivatives of TnpA were fused to the yeast GAL4 DNA
binding domain and tested for their ability to affect transcription 
of a LUC reporter gene expressed from a minimal plant promoter 
containing GAL4 binding sites (Figure 1; Ginigeret al., Cell 40: 
767-774, 1985; Trentmann et al., Mol. Gen. Genet. 238: 201-208, 
1993; Schlappi et al., Cell 77: 427-437, 1994). The Herpes 
Simplex VP16 activation domain fused to the GAL4 DNA-binding 
domain served as a positive control (Triezenberg et al., Genes Dev. 
2: 718-729, 1988). The effect of the fusion genes was compared 
with the baseline transcriptional activation observed with the 
GAL4 binding domain in plant cells. Effector plasmid DNAs 
carrying the various translational fusions were coated onto 
tungsten particles together with a GAL4 binding site-containing 
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Figure 1. Schemallc represenlation of GAL4 fusion genes and lhe luciferase reporter gene. 

(A) Effector pl as mids are those that encode a trans-acllng acti valor or repressor of the 
luciferase reporter gene. Each construct contains the yeast GAL4 DNA binding domain either 
alone or transfationally fused to the following: VP16, the strong activation domain of the 
Herpes Simplex virus VP16 (amino acids [a.a.) 413 to 490); A[3-621), full-length TnpA (a.a. 3 
to 621); A[1-120), N-terminus of TnpA (a.a. 1-120); A[422-518], the protein dimerizatlon 
domain of TnpA (a.a. 422 to 518); A[543-621J, C-terminus of TnpA (a.a. 543 to 621); A[422-
621J, the dimerizatlon domain and C-termlnus of TnpA (a.a. 422 lo 621 ). Pinll, potato 
protelnase inhibitor// lerminalor; CaMV, Cauliflower Mosaic Virus 35S promoter. 

(B) The reporter plasmid contains 5 GAL4 DNA binding sites upstream from a truncated 
CaMV promoter (bp -59 to +2) and the firefly luclferase gene. 
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LUC reporter plasmid (Fig. 18) and introduced into tobacco 
suspension cells by microprojectile bombardment {Russell et al., In 
Vitro Cell Dev. Biol. 28: 97-105, 1992; Raina et al., Proc. Natl. 
Acad. Sci. 90: 6355-6359, 1993). A plasmid containing a 
bacterial CAT gene expressed from the CaMV 35S promoter was 
used to normalize for transformation efficiency. LUC and CAT 
activities were assayed 18 hours after introduction of the DNA 
and the ratio of LUC to CAT activity was calculated to correct 
for between-experiment variation. The LUC/CAT ratios obtained 
with different constructs were then compared with the relevant 
control by calculating the ratio of the LUC/CAT value obtained 
with an experimental construct to that obtained with the relevant 
control construct and expressing the ratio as "relative 
activation." Thus, for example, in Figure 2A, the reference control 
value is the LUC/CAT ratio obtained with an antisense effector 
plasmid, while in Figure 28, it is the LUC/CAT value obtained with 
an effector plasmid expressing the GAL4 DNA-binding domain. 
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Figure 2. Expression of a GAL4-LUC reporter gene In the presence of GAL4-TnpA and GAL4-
VP16 effector plasmids. 

(A) Relative activation of the LUC reporter gene In tobacco suspension cells by expression of 
the chimeric GAL4/TnpA genes shown In Figure 1. The activity of the test plasmid was 
measured and normalized lo an internal CAT control as described in Experimental Procedures. 
Relative Activation represents the ra tlo of normalized LUC activity obtained in the presence of 
a GAL4-or a GAL4/TnpA effector plasmid to that observed with an effector plasmid carrying 
an antisnese GAL4NP16 construct. The LUC reporter plasmid contains GAL4 DNA binding 
sites and a minimal CaMV 35 S promoter (Figure 1 B). 

(B) Activation of the LUC reporter gene by Iha chimeric GAL4NP16 construct shown in Figure 
1. Relative Activation is the ratio of normalized LUC activity observed in the presence of the 
GAL4NP16 fusion to that observed with GAL4 binding domain alone. 

A plasmid containing the coding sequence for the GAL4 DNA
binding domain activates the LUC reporter gene 14-fold {Fig. 2A; 
relative activation: 14.3 ± 4.4) in tobacco cells. All of the 
chimeric genes containing TnpA coding sequences fused to a se
quence encoding the GAL4 DNA-binding domain showed lower 
levels of LUC expression than that detected with the GAL4 DNA
binding domain sequence alone {Fig. 2A). While these observations 
are consistent with our previous report that TnpA represses its 
own promoter {Schlappi et al., Cell 77: 427-437, 1994), the fact 
that even small segments of the coding sequence are inhibitory 
suggests that their addition to the GAL4 binding domain simply 
serves to interfere with its ability to interact with other proteins. 



When the strong VP16 activation domain is fused to the GAL4 
DNA-binding domain, expression of the reporter gene is stimu
lated only an additional 10-fold over the background value ob
served with the GAL4 DNA-binding domain alone (Fig. 2B; rela
tive activation: 10.9 ± 0.9). Thus the GAL4-based system is rel
atively insensitive in plant cells because of the high basal activation 
observed with the GAL4 DNA-binding domain alone. 

As previously reported, TnpA represses its own promoter 
(Cook and Fedoroff, MNL 66: 11-12, 1992; Schlappi et al., Cell 77: 
427-437, 1994). The Spm promoter is short (0.2 kb) and con
tains 9 12-bp TnpA binding sites (Gierl et al., EMBO J. 7: 4045-
4053, 1988; Raina et al., Proc. Natl. Acad. Sci. 90: 6355-6359, 
1993). To determine whether TnpA can be converted from a re
pressor into an activator by addition of a strong activation do
main, the coding sequence of the VP16 activation domain was 
fused to different deletion derivatives of the TnpA coding se
quence (Figure 3A}. TnpA and TnpANP16 fusion gene plasmids 
were co-bombarded into tobacco suspension cells with reporter 
plasmids in which the LUC gene was expressed from the Spm 
promoter (Fig. 3B}. In contrast to the GAL4 DNA binding do
main, which itself stimulates LUC expression substantially (Fig. 
2), TnpA constructs lacking VP16 have no detectable background 
activity . Instead, expression of TnpA constructs containing the 
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Figure 3. Schematic representation of chimeric TnpA-VP16 and Spm promoter-lucilerase 
reporter genes. 

(A) Eflector plasmids contain translational luslons of the following TnpA domains to the 
Herpes Simplex VP16 activation domain (a.a. 413 to 490): A[1-120], N-terminus of TnpA 
(a.a. 1 to 120); A[1-422], N-terminus and DNA-binding domain of TnpA (a.a. 1 to 422); A[1 -
543], N-terminus, DNA-binding and protein dimeriza tlon domains of TnpA (a.a. 1 to 543). 
Pini!, potato proteinase inhibitor It terminator; CaMV, Cauliflower Mosaic Virus 35S promoter. 

(B) The firefly LUC gene In the reporter plasmids is expressed from either the UCR promoter 
sequence of the Spm element, which contains 9 TnpA binding sites, ( Raina et al., Proc. Natl. 
Acad. Sci. 90: 6355-6359, 1993), or 1 of 2 different fragments of the Spm 3'-end in the 
antisense orientation , each containing 15 TnpA binding sites (Masson et al., Genetics 177: 
117-137, 1987; Gierl et al., EMBO J. 7: 4045-4053, 1988). Nos 3', nopaline synthase 
terminator. Ca3', CaMV 35S terminator; Pinll, potato proteinase inhibitor It terminator. 
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Figure 4. Activation ol the Spm Promoter by TnpANP16 fusion proteins in tobacco cells. 

(A) Relative activation of UCR-LUC reporter gene expression (Fig. 38) by the chimeric 
TnpANP16 fusion proteins shown in Figure 3A. Controls were plasmids carrying the 
corresponding TnpA gene or gene lragments lacking the VP16 activation domain. LUC activity 
was measured and normalized as described in Experimental Procedures. Relative Activation is 
the ratio of normalized LUC activity observed in the presence of the effector plasmid 
expressing the TnpANP16 to that observed with an eflector plasmid expressing only the 
corresponding TnpA gene or gene fragment. The inset shows the corresponding relative acti -
vation values for the TnpA gene fragments relative to the bluescript pKS(+) vector control. 

(B) Relative activation ol 1 µg Spm 3'-LUC reporter plasmid cobombarded into tobacco 
suspension cells with 1 µg effector plasmid containing chimeric TnpANP16. Fold Activ~tion is 
expressed as the ratio of TnpANP16-eflected relative promoter activity to background 
activity eflected by TnpA alone. The Spm 3'-end contains 15 TnpA binding sites. The 
constructs are shown in Figure 3. 

DNA-binding and dimerization domains represses the weak Spm 
promoter, as previously reported (Figure 4A, insert; Schlappi et 
al., Cell 77: 427-437, 1994). 

Expression of plasmids carrying certain TnpA-VP16 fusions 
activates transcription of the LUC gene from the Spm promoter 
(Figures 3 and 4 ). A fusion of the VP16 activation domain to the 
first 120 amino acids of TnpA does not activate expression of the 
LUC gene (Figure 4A), while VP16 fusions containing the TnpA 
DNA binding domain do. A VP16-TnpA fusion protein which con
tains the TnpA binding domain, but lacks the protein dimerization 
domain, stimulates promoter activity 21-fold over that observed 
with TnpA alone (Figure 4A, A[1-422]NP16). The VP16 fusion 
gene containing both the DNA-binding and the protein dimeriza
tion domains of TnpA is the stronge-st activator (Figure 4A, A[1-
543]NP16). Relative to A[1-543] alone, the A[1s543]NP16 
fusion activates the Spm promoter more than 30-fold (relative 
activation: 34.0 ± 1.79). The range of promoter activation varied 
between 33-and 45-fold in different experiments. Thus the ad
dition of an activation domain to TnpA converts it to a strong ac
tivator of the Spm promoter. 

Two observations suggest that the TnpA binding sites are the 
most important determinant of the Spm promoter's response to 
the VP16-TnpA fusions. First, the element's 3'-end, whose se-
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quence organization resembles that of the 5'-end and contains 15 
TnpA binding sites (Fig. 3B; Masson et al., Genetics 177: 117-137, 
1987; Gierl et al., EMBO J. 7: 4045-4053, 1988) can substitute 
for the Spm promoter in the present assay. As shown in Figure 
4B, the A[1-543]NP16 fusion activates expression of the LUC 
gene from two different Spm 3'-end fragments by 20- to 40-
fold. Second, the Spm promoter is a TAT A-less promoter (Raina 
et al., Proc. Natl. Acad. Sci. 90: 6355-6359, 1993) and addition 
of a TAT A box does not further enhance the ability of a VP16-
TnpA fusion protein to activate the LUC gene from the Spm pro
moter (data not shown). Because TnpA is normally a repressor of 
the unmethylated promoter, the baseline or background activity 
observed with the Spm promoter-driven reporter gene is ex
tremely low, providing a highly sensitive plant-specific system for 
detecting and analyzing transcription activation domains of pro
teins. In the present experiments, LUC activity was 33-45 times 
the background value using the VP16/TnpA/ Spm promoter hy
brid system, as compared with only about 10-fold over back
ground with the VP16/GAL4 system in plant cells. While the ab
solute value of the activation was lower for the Spm promoter
based hybrid protein system, the higher sensitivity of the system 
permits detection and analysis of much weaker activation domains 
than the GAL4-based system. In addition, this plant-based hy
brid system may permit detection of transcription activation do
mains which require plant-specific co-factors. 

BEIJING, CHINA 
Academia Sinica 

RAPD analysis of mtDNAs from multiplasmic ems lines 
--Wang, Z; Wang, B and Zeng, M 

The mitochondrial DNAs of three maize multiplasmic ems 
(cytoplasmic male sterility) lines: Mo17-cms-19A (T group), 
Mo17-cms-shang26 (S group), Mo17-cms-C (C group), and their 
maintainer line Mo17, and a new inbred, Tai-A ems line (unknown 
group) and its maintainer line C103 were analyzed with 21 O ran
dom decamer nucleotide primers. The experimental results were 
as follows: 

1) A genetic relationship dendrogram was made and the ge
netic distance was calculated by cluster analysis with the amplifi
cation products clearly amplified from 40 Operon primers. It was 
found that the relative genetic gap between Tai-A and the other 
five lines is as long as 24.9, however, its affinity between Mo17-
cms-19A and Mo17-cms-C, and the genetic distance, is only 6 be
tween them. 

2) A RAPD-fingerprinting map of the six lines was made with 
five primers: OPAC-02, OPAN-05, OPG-19, OPT-09 and OPT-
12, which would provide a rapid and convenient molecular tool to 
detect the six lines. In the map, RAPD-PCR products: OPAC-
02(680), OPAC-02(1053), OPAN-05(680), OPAN-05(370), 
OPT-12(1230), OPT-09(800) in company with OPG-19(290) 
can be used as molecular markers to separate and identify Mo17-
cms-shang26, Mo17-cms-C, Mo17-cms-19A, Tai-A, Mo17 and 
C103, respectively. 

The mitochondrial DNAs of six lines were digested by restric
tion endonuclease Ps~. From the digestion pattern, it was found 
that Tai-A apparently differed from the other lines. According 
to the results of restriction endonuclease pattern and RAPD anal
ysis, we think that Tai-A may be a new kind of ems line differing 
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from T, C, S types and the origin of Mo17-cms-19A, Mo17-cms
shang26 and Mo17-cms-C. 

In addition, primer OPZ-05 and primer OPT-09 can amplify 
special polymorphic products in four ems lines and two maintainer 
lines respectively. The special RAPD PCR products of OPT-
09(800) in C103 and Mo17 were cloned into PUC19 and Southern 
hybridization results showed that the cloned fragments were ei
ther single-copy or low-copy number (Fig. 1 ). 

1 2 3 4 S 6 

Figure 1. Ampl/HedpolymorphlcproooctsforprimerOPH-07. 1) Mo17-ans-C; 2) Mo17-cms-
19A; 3) Mo17-cms-shang26; 4) TalA; 5) C103; 6) Mo17. 

Analysis of biochemical constitution of new gennplasm In sweet 
com 

--Liu, Y; Zeng, M and Ye, S 

The new germplasms of the sweet corn which were trans
ferred and bred were used as experimental materials. The bio
chemical constitution, the heterotic rate and genetic control were 
studied. The results showed: 1) the new germplasms have high 
nutritive value and taste quality and were similar to the progenitor 
type in each biochemical constitution; 2) the heterotic rates were 
negative on most quality characters, but it is evidently different 
from the growth vigour character; 3) the external characters and 
the content of sugar were controlled by a pair of recessive genes 
in the normal sweet, brittle sweet and supersweet corn (Tables 1-
3). 

Table 1. Biochemical composilion for new germplasm in sweet com. 
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Noles: G - fresh grain E - young ear 



Table 2. Amino acid composition for new germplasm in sweet com (mg/100g dry weight). 
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Table 3. Mineral elements for new germplasm In sweet corn (mg/100g dry weight). 
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Transformation: ovary injection 
--Ding, Q; Xie, Y; Dai, J; Mi, J; Li, T; Qiao, L; Tian, Y and Mang, 
K 
About twelve hours after artificial pollination, plasmid 

(containing the Bt gene) was injected into young ovaries. These 
injected ovaries were kept growing until seeds matured, then har
vested and sowed in soil. The chromosomal DNA was isolated from 
leaves of plantlets and tested with dot blotting, PCR and South
ern blotting analysis. A total of 5 out of 363 plantlets demon-
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strated positive tests in Southern blotting analysis. One of the 
five was comprehensively identified with a Bt gene fragment 
probe (EcoRI digested): the undigested sample of its chromoso
mal DNA showed a hybridization signal at a size of about 30kb, 
EcoRI digested sample showed an expected 1.2kb band, and 
Accl(which has a cut site in the region of probe) digested sample 
showed one 10kb signal band and another weak band at about 
0.8kb size while the Bgnl digested sample showed a 9kb signal 
band and light smear (Ding Qunxing et al., Science in China (Series 
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8) 37(5):563-572). This transgenic plant was normally fertile 
and its offspring were tested with Southern blotting analysis 
also. Interestingly, the Bgnl digested samples of the offspring's 
chromosomal DNA showed a different hybridization pattern: one 
had four bands siting from 30kb to 8kb with almost the same in
tensity while another had two close bands near 23kb. It seems 
that the integrating position on chromosome or the copy number of 
the Bt gene might change. Recently, the R4 and RS generations 
have been obtained and genetic analysis results will be reported 
soon. Meanwhile the mechanism of injection transformation has 
been studied also. Carbon powder and tungsten particles (1 nm, 
with plasmid DNA precipitated onto the particles) were used as 
tracks respectively in light microscope and electron microscope. 
The results proved that carbon powder and tungsten particles 
could enter the embryo sac and spread following its development. 
This transformation technique is genotype independent, evading 
tissue culture and regeneration. It's considered that several fac
tors are important: the first is the injection time, which must be 
after sperms enter the sac and before the fertilized egg divides, 
which also depends on the varieties, length of silks and tempera
ture etc.; the second is avoiding heavy injury on the ovaries, for this 
we have designed a micro-glass-tubed (diam. 2-5µm) injector; the 
third is keeping the injected ovaries vital enough to mature; the 
fourth, is that a special solution for plasmid DNA (1 00µg/ml fi
nal) was used: 20mmol/L MgCl2, 1.5mmol/L HBO3, 1 0mmol/L 
glycine, 5mmol/L spermidine, 5% PEG6000(w/v). 

BERKELEY, CALIFORNIA 
University of California 

Macrohairfess (mh/1), a new recessive mutation 
--Lane, B and Freeling, M 

A new phenotype was observed segregating in a population of 
plants which also segregated the dominant mutant Rldt-O/+; 
+/+. Subsequent generations revealed that the trait segregated 
as a single recessive genetic factor. The resulting phenotype of 
the homozygote is a failure to elaborate the normal complement of 
macrohairs on the adaxial surface of the leaf blade. When homozy
gous, the mutation also results in the failure to elaborate the ab
normally expressed macrohairs on the abaxial surface of the leaf 
blade in Rld1-OI+ heterozygotes. No evidence of instability has 
been observed. A 8-A translocation stock mapping population has 
been generated and will be screened next season. Further charac
terizations of the extent and nature of the phenotype are in 
progress. 

Linkage of semi-dominant Rolled1 mutant alleles 
--Lane, B and Freeling, M 

In order to test for linkage between several dominant mutants, 
all of which have in common the expression of the various Rolled 
phenes, the following experiment was undertaken. Because previ
ous attempts to generate homozygotes were not successful, known 
heterozygotes for each of several of the alleles were crossed to 
each other, generating families which segregated one of the two 
possible critical genotypes: either Rld1-OIR/d1 * or Rld1-O/+, 
Rld2*/+. Each phenotypically Rolled plant in the resulting popu
lation was outcrossed to a +/+ tester. The resulting progeny 
were grown out and families not segregating 1 :1 for the Rolled 
phenotype were analyzed. In addition to confirming the previously 
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reported close linkage between Rldt-O (previously referred to as 
Rld-1990) and Rldt-1441 (S. Chao and M.G. Neuffer, 
MNL67:33), they revealed a very close linkage between two other 
mutations exhibiting the Rolled phenotype (Table 1 ). These will be 
referred to as Rldt-1608 and Rld1-MF. Contamination cannot be 
ruled out, therefore the map distances expressed may in fact be 
smaller. 

No. outcross No. exhibiting No. not exhibiting Map 
Muta•t gaic lllQll~~ !lb:.ellr'.ad Bl~ab~a~ B!d ll!Jaaalill!l ~ 
Rfdl-O, Rldl-MF 416 413 3 0.7 
Rldl-O, Rldl-1441 438 437 1 0.2 
Rldl-1441, Rldl-MF 90 89 1 1.1 
Rldl-1608, Rldl-MF 115 115 0 

Another mutation, Rld1-PB, showed no recombination with the 
linked polymorphism identified by the RFLP marker csu54 in 91 
individuals genotyped, also indicating a very close linkage to Rld1-
0. Based on this information we conclude that the five dominant 
Rolled mutants studied are likely to be alleles of rld1. 

humpback1, a new recessive leaf mutant, maps to chromosome 1 S 
--Schneeberger, R; Scanlon, M and Freeling, M 

humpback1 (hmp1) was identified in an EMS pollen mutagenesis 
M2 screen in our 1993 San Jose nursery (see Harper et al., MNL 
69:22, 1995). The phenotype is inherited as a recessive trait and 
is characterized by proliferation of sheath just beneath the auricle 
resulting in a bulged sheath. The phenotype is extremely localized 
to the distal-most part of the sheath just preceding the auricle 
and ligule and is more apparent on leaves above the ear node. The 
auricle and ligule are not affected. The sheath phenotype is often 
more pronounced on either side of the midrib but usually extends 
from margin to margin. Husk leaves also show tissue proliferation, 
however the phenotype is localized to the base of the husk leaves 
and not at the tip, the location of the blade sheath boundary in 
husks. Phenotypic expression and penetrance are better in a W23 
background and poor in both 873 and Mo17 after two generations 
of introgression. hmp 1 was included in our 1994 8-A transloca
tion mapping block and screened for phenotypes in our 1995 nurs
ery. Two independent families from crosses of heterozygous hmp1 
by TB-1Sb hyperploid heterozygotes (TB-1Sb/vp5) showed 
hmp1 phenotype. hmp1 phenotype was not observed in any other 
TB crosses. We are currently mapping with RFLP and visible 
markers to further define the location of hmp 1 on chromosome 1 S. 

The semaphore1 mutation maps to 9S 
--Scanlon, M and Freeling, M 

The semaphore1 (sem1) mutant (previously described as mu
tant designation dek*-Mu1364) is a recessive, small seeded, small 
embryo mutant with many pleiotropic effects on plant phenotype 
(Scanlon et al., Genetics 136:281, 1994). These phenotypes in
clude brachytic stature, leaves that droop, and ectopic ligule and 
acropetal ligule displacement in the midrib region. The mutant was 
included in 8-A translocation mapping projects in the summer 
1993 and again in 1995. In crosses of plants heterozygous for the 
sem1 mutation by marked hyperploid males of the genotype TB-
9Sdlc2, wx1, sh1, the progeny included kernels with small en
dosperm and large embryos, and plump kernels with small mutant 
embryos. The discordant kernel classes were planted and the 
small seeds with large embryos yielded nonmutant healthy plants 
whereas the large seeded small embryo kernels produced small, 



brachytic plants with the sem 1 phenotype. The mutation was 
therefore placed on chromosome arm 9S, distal to wxt. Because 
there are no previously described mutants on 9S with the above 
mentioned phenotypes, we have designated this new gene 
semaphore 1. 

The leaf blade reduction mutant nl*-1517 maps to 3S 
--Scanlon, M and Freeling, M 

In a 1993 screen of M2 progeny of EMS mutagenized material 
(see Harper et al., MNL 69:22) a new narrow leaf (n~ mutant al
lele, laboratory designation nl*-1517, was identified with a re
duced blade phenotype. The blade reduction phenotype shows 
variable expression. Younger leaves are more affected than older 
leaves, and leaf blades are shorter and more narrow than in nonmu
tant siblings. Frequently the blade is entirely absent, although the 
ligule, auricle and sheath are not affected. Usually, plants with se
vere leaf phenotypes form no tassels, or develop only rudimentary 
male flowers. No adverse effects on ear development have been 
observed. The mutant was included in a 8-A translocation map
ping project in 1994. The mutant phenotype segregated in the F1 
progeny of several crosses between nl*-1517 heterozygotes and 
males which were marked, hyperploid heterozygotes of the geno
type TB-3Sb/c/1. Therefore, the new mutant nl*-1517 is placed 
on chromosome arm 3S, distal to c/1. 

Vestigial glume ( Vg1-R'J plants exhibit cell death in the ligule 
--Jesaitis, L and Freeling, M 

The dominant mutant Vg 1-R was first noted for greatly 
diminished glumes in both the tassel and ear (J. Hered. 30:143-
145, 1939). Later it was found that Vgt-R also severely reduces 
the ligule (Laughnan, MNL30:67, 1956; Galinat, personal 
communication). Here we report on our studies of Vgt-R ligule 
development. We . inspected developing ligules both 
macroscopically and microscopically in Vgt-R heterozygotes after 
three generations of introgression into Mo17. The first two leaves 
of the Vgt-R seedling produce long, wild type-appearing ligules. 
Before leaf three emerges from enveloping older leaves, the ligule 
of leaf 2 degenerates gradually until just the base remains. This 
process can be observed over a period of 24 hours. The ligule of 
leaf 1 remains unaffected. In longitudinal sections, degenerating 
ligules contain distal cells with collapsed walls, indicating that cell 
death plays a role in Vgt-R induced ligule loss. 

Leaf 3 and all subsequent leaves also exhibit reduced ligules. 
Unlike leaf 2, however, the ligules of these later leaves are already 
diminished at the time of leaf emergence from enveloping lower 
leaves. Based on histological examination, ligules of later leaves 
appear to initiate normally from the adaxial leaf surface. At this 
point, we are in the process of investigating whether diminished 
growth and/or cell death is involved in ligule reduction in these 
later leaves. The fact that ligules of leaf 2 and subsequent leaves 
become simultaneously subject to reduction suggests that Vgt-R 
triggers a switch leading to diminished ligules throughout the 
plant. 

Experiments are currently underway to determine the effect 
of wild type gene dosage on Vgt-R phenes, to determine whether 
Vgt-R is cell autonomous, and to transposon-tag Vgt-R. 

Generation of heritable unstable chromosome 7S stocks from TB-
7Sc 

--Tyers, R and Freeling, M 

Unstable chromosomes may be used to uncover recessive em
bryonic lethal mutations in sectors of the plant. This allows analy
sis of post-embryonic effects of these mutations in the sporo
phyte. Such chromosomes have been produced from TB translo
cations, as has been previously reported by Wayne Carlson (Theor 
Appl Genet 43:147, 1973) and Achille Ghidoni (Theor Appl Genet 
43:151, 1973). Their putative ring chromosomes appeared in the 
progeny of crosses where the male carried a supernumerary 8-A 
chromosome (A Ax A A 8-A). 

We used a recessive allele of viviparous9 (vp9) as a marker 
for instability of TB-7Sc. Sectors hemizygous for vp9 are white 
in a green background. We derived two stocks that heritably un
cover vp9 in variably sized sectors. Each unstable 8-7 chromo
some appeared in the progeny of a TB-7Sc hyperploid crossed by 
a wild type tester (7 78 87 87 x 7 7). · 

One of these putative ring chromosome stocks has been sub
jected to preliminary molecular and cytological analysis. Tissue 
was collected from two plants showing large leaf to leaf sectors 
and DNA was prepared from both within the sector and from sur
rounding green tissue. Southern analysis using rst sequence as a 
probe showed loss of one copy of this gene, which lies on chromo
some 7S, in the white sectors. Examination of meiocytes revealed 
pachytene configurations consistent with ring chromosomes. 
However the expected anaphase I double bridges that would indi
cate the presence of ring chromosomes have not yet been ob
served. 

CANBERRA, AUSTRALIA 
CSIRO Plant Industry 

Linkage of Gdcp1 with the Rp1 locus 
-- Ayliffe, M and Pryor, T 

Glycine decarboxylase is a nuclear encoded mitochondrial en
zyme involved in the metabolism of 2 carbon glycine into 3 carbon 
serine. 
Overall reaction: 

2 Glycine + NAD+ ----> Serine + CO2 + NH3 
The enzyme complex is formed from four subunits (Oliver, Ann. 
Rev. Plant Phys. Mol. Biol. 45:323-337, 1994) and the 100kD P 
subunit has been shown to function as the amino acid decarboxylase 
part of the complex. 

The fungus Cochliobo/us victoriae is the causal agent of a 
blight in oats due to the production of a host-specific toxin, vic
torin. The victorin binding protein in oats has been identified as 
the 100kD P subunit of glycine decarboxylase (Wolpert et al., 
Plant Cell 6:1145-1155, 1994). Sensitivity to victorin and conse
quent susceptibility to fungal isolates that produce the toxin is 
specified by a single dominant gene Vb in the host. The Vb gene is 
thought to be coincident with a gene Pc-2 which specifies resis
tance to the oats crown rust, Puccinia coronata. It is therefore of 
interest to determine whether or not the gene (Gdcp) coding for 
the P subunit of glycine decarboxylase maps at any of the 5-6 loci 
known to specify resistance against rust infection in maize. 

A comparison of the amino acid sequence of the GDC-P subunit 
from oats, pea and Flaveria made it possible to design primers 
which amplified, from a maize cDNA library, a 400bp PCR prod-
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uct that showed high homology to the GDC-P coding region. The 
PCR product was cloned and the cloned insert has been used as a 
probe in RFLP analysis to map loci, which specify the P subunit of 
glycine decarboxylase. Three lines of evidence suggest that one of 
the loci observed maps to the short arm of chromosome 1 0 at or 
near the Rp1 complex specifying resistance against the maize rust 
P. sorghi. 

i. Mapping in the Recombinant Inbred Family-1 (CM37 x 
T232) (Burr et al., TIG, 7:55-60, 1991) revealed three Gdcp loci, 
called pic7A, 7B and 7C, that segregated in genomic DNAs di
gested with EcoRI or Bg/11. Two loci, pic7A and 7B, are linked 
(about 25%) and show loose linkage to chromosome 6. The pic7C 
locus mapped near npi285 (R=0.07) and bn/3.04 (R=0.18). 

ii. Crosses involving the 1 OS terminal deletion -def(bn/3.04-
RpS-Rp 1-M)-show that the pie 7C band is covered within this 
deletion. The deletion does not cover the marker npi422, which is 
located several map units proximal to Rp1. These data then place 
this Gdcp gene on 1 OS in a distal segment that also contains the 
Rp1 locus. 

iii. The Gdcp1 locus maps close to Rpt-O13 in a backcross 
family: A plant heterozygous for Rpt-O13/rp was backcrossed to 
the susceptible parent (rplrp) and the resultant progeny segre
gated 15 resistant to 23 susceptible. No recombinant progeny 
were recovered when these progeny were scored for the RFLP 
markers bn/3.04 and npi285 that flank the Rp1 locus. One of the 
23 susceptible seedlings was recombinant for the Gdcp marker. 
While this individual cannot at present be distinguished from a po
tential contaminant the data suggest that the Gdcp locus is distal 
to the bn/3.04 locus. A proximal location is ruled out by the defi
ciency data. These data require confirmation. 

A gene ( G dcp 1) coding for the P subunit of glycine 
decarboxylase maps near the Rp1-complex. The Gdcp1 gene is 
very different from the known structure of plant genes specifying 
resistance against fungi, bacteria and viruses (Staskawicz et al., 
Science 268:661-667, 1995). Consequently it is unknown if this 
map location has some functional significance in terms of rust 
resistance or whether the linkage of a Gdcp locus to a rust 
resistance gene is fortuitous, reflecting synteny between the 
maize and the oat genomes. 

'Trisomic' 10S maize lines 
--Pryor, T and Brock, D 

We have previously reported (MNL 67:25-26) the recovery of 
a chromosome fragment (mini-1) that rescues lethal oil yellow 
genotypes. This mini-1 is thought to be a partial isochromosome 
that covers the proximal part of 1 OS at least as far as the oil yel
low locus ( Oy). This conclusion is based on three observations: (i) 
oil yellow somatic variegation correlated with lagging and loss of 
the mini-1 at mitotic and meiotic anaphase; (ii) gene dosage exper
iments indicating that the mini-1 chromosome has two doses of the 
wild type allele Oy+; (iii) the recovery of plants with derivative 
mini chromosomes such as those with two small or 1/2 minis 
(telocentrics) and those with a large mini. Two independent re
coveries of the large mini, called Lg-1 and Lg-2, have been made 
and both appear to be heteromorphic with one arm about the same 
size as the original mini-1 while the other approximates the size of 
the short arm of chromosome 10. Our interpretation is that we 
have recovered a crossover between the mini-1 and the regular 
1 OS. This gives rise to a chromosome in which the large arm com
prises most or all of 1 OS and the small arm is the 1 OS proximal 
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region up to Oy+, which was present in the original mini-1. Unlike 
mini-1, the Lg-1 chromosome frequently forms trivalent associa
tions with chromosome 1 0 at meiosis confirming the presence of 
1 OS. However, the full extent of this 1 OS will be determined ge
netically and by the ability of this chromosome to rescue a homozy
gous lethal terminal deletion (def(bnl3.04-Rp5-Rp1-M). 

The Lg-1 chromosome has been recovered in both the olive 
(oy/oy) and the lethal yellow (Oy/Oy ) backgrounds. These 
stocks can be maintained by selecting green seedlings segregating 
among selfed progeny. The Lg-1 chromosome shows about 25% 
pollen transmission and 12% via the egg. These stocks will provide 
a useful source of trisomic 10S material for genetic study. 

CHESTNUT HILL, MASSACHUSETTS 
Boston College 

Genie instability of a maize inbred line derived from anther culture 
--Ting, YC and Nguyen, DQ 

Last summer plants of a maize inbred line derived from 
repeated selfings of a microspore plant of KH-13 were grown in 
the field. During the last few years, genie stability of this inbred 
was rated as high. However, in the middle of last June, a month af
ter the emergence of seedlings, some of them appeared yellow
green in leaf color, followed by slow growth of the plants. Two 
months later, it was apparent that plants of this inbred line could 
be classified into two distinct groups. In other words, they 
demonstrated segregation. As the plants were counted, it was 
clear that among a total of 72 plants, 11 of them were dwarf and 
yellow green. On the other hand, the sib plants of this inbred line 
grew to normal height, and the color of plants was dark green. 
When the plants attained tasselling stage, it was observed that 
the dwarf, yellow green plants were completely male sterile. No 
ear shoots were developed either. Hence, it was impossible to 
make any progeny tests. Nevertheless, this observation does con
stitute a further evidence that anther culture derived plants may 
not be genically stable. In contrast, in the same field, plants of five 
other maize inbred lines were also grown. One of them was a de
scendant of an anther culture developed microspore-plant. In a 
total of approximately 500 plants, no segregation of any charac
teristics was found. 

Tassel plant of maize 
--Ting, YC and Nguyen, DQ 

It is known that morphogenesis of inflorescences of flowering 
plants is under genie control. Whenever a controlling gene(s) is 
turned on by induction factors, low temperature, ionizing radiation 
etc., the developmental pathway is normally as follows: the vege
tative meristem gives rise to inflorescence meristem. In turn, the 
inflorescence meristem is transformed into floral meristem. Then, 
the floral meristem develops into floral parts. This is also true for 
maize. However, if an intrinsic developmental factor involved in the 
regulation of floral initiation is inactivated, maize floral develop
ment can be arrested. The following is an example of this altered 
development. 

In the last summer, among a row of semi-perennial maize, one 
plant was particularly vigorous and bore more tillers than the oth
ers. However, it was slow in development. When the tassel of this 
plant emerged, it appeared strong and pendant, and its antheses 
were totally aborted. In consequence of this, many plantlets, 



starting from the proximal portion, grew out from the tassel of 
the main stalk (culm). By a single count, 78 of them were scored. 
Under close examination of these plantlets, it appeared that they 
originated from paired spikelets (Figure 1 ). Subsequently, this 
plant was tentatively designated tassel plant, or Tpl for short. In 
addition, some variations, such as in plant color and growth pat
tern among the plantlets, were observed, indicating segregation 
occurring during meiosis. This suggests that the plantlets might 
differentiate from the microspores. Nonetheless, this can not be 
ascertained until their chromosome number is determined. 

Figure 1. Plantlets of a tassel plant. Size reduced by about 50 percent. 

When the plantlets had reached about two weeks old, two
dozen of them were removed from the tassel and planted in pots in 
the greenhouse. About 50 percent of these transplanted 
plantlets continued to grow into large normal plants while the oth
ers reverted into pistillate flowers. Cross-fertilizations were at
tempted between these flowers and the sib tetraploid, but no 
seed sets were obtained. On the other hand, those plantlets left 
on the main tassel also continued to grow. Later about 1 O percent 
of them also reverted to pistillate flowers with two or more silks. 

Cross-fertilizations were also attempted, but no viable seeds 
were found. The rest of the plantlets continued to grow to four 
to five-leaf stage. Then, they withered and died. 

One of the above plant's tillers grown from the basal node also 
had a larger than average tassel. In addition to having more than 
50 plantlets developed, it had a few antheses. Then they were 
followed by dehiscence. Consequently, its pollen was applied to 
silks of one half of its ear, and those of the other half were out-

crossed to a sib (4n). At harvest, 73 well-developed kernels were 
obtained. Presumably one half of them developed from selfings, 
and the other, from crossings. There are now more than 1 O plants 
descended from both selfings and crossings, growing in the 
greenhouse. These plants are normal in phenotypic appearance and 
are growing well. A planned genetic as well as tissue culture 
investigation is under way with these plants. 

COLOGNE, GERMANY 
Max Planck lnstitut fur Zuchtungsforschung 

Probes for small transfer cell-specific proteins 
--Willmott, RL; Hueros, G; Varotto, S and Thompson, RD 

A cDNA clone was isolated from a cDNA bank constructed 
from 10-days after pollination (DAP) endosperm mRNA and has 
been characterised in detail (Hueros et al., Plant Cell 7:747-757, 
1995). This was the first reported gene to be exclusively ex
pressed in basal region of the endosperm. This area is highly spe
cialised to facilitate uptake of solutes during grain development. 
Due to the location of the expression of the gene it was referred 
to as BET1 (for .b,asal .e,ndosperm transfer layer). Subsequently a 
bet1 (glycinebetaine 1) locus was found to €Xist in Maize DB 
{#40554), therefore to minimize confusion we suggest the 
transfer cell-specific genes be referred to as bet/. 

So far two transfer cell-specific cDNAs have been isolated 
(bet/1 and bet/2, ID #105963 and 105964 in the Maize DB 
respectively). bet/1 belongs to a small multigene family of which 
four different members have been characterised, and two copies 
of bet/2 are present in the maize genome. Both genes are strongly 
expressed between 9 to 20 DAP, betl2 being more highly 
expressed then bet/1. The proteins encoded by betl1 and betl2 
share some common features: the deduced amino acid sequences 
comprise small proteins with calculated Mr of 7 kD. The 
sequences start with a hydrophobic region characteristic of a sig
nal peptide and the encoded proteins are cysteine rich. The bet/1 
polypeptide contains one copy of the extensin motif, SPPPP and 
is found in cell wall fractions. The function of bet/2 remains to be 
eludicated, however the protein has two interesting features, a 
potential glycosylation site and the possibility of numerous disul
phide bond formations. Neither betl1 nor bet/2 share obvious 
similarities with sequences in current databases. 

Genomic clones corresponding to the bet/1 cDNA have been 
isolated and characterised. Interestingly two clones were derived 
from a distinct but closely related locus, provisionally termed 
betl3. The bet/3 coding sequence displays 90% similarity to bet/1. 
From the predicted amino acid sequence it is evident that the 
proteins contain no extensin motif. Preliminary evidence indicates 
that betl3 expression may not be limited to the transfer cell layer, 
which may point to a different role for this protein. 

COLUMBIA, MISSOURI 
University of Missouri 

Pl-Rhoades is more susceptible to DNase I cleavage than Pl· 
Blotched 

--Hoekenga, OA and Cone, KC 

Pl-Rhoades (Pl-Rh) and Pl-Blotched (PI-Bh) are alleles with 
strikingly different phenotypes. Pl-Rh leads to uniform pigmen-
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tation in the plant and is silent in the kernel. PI-Bh leads to varie
gated pigmentation in both the plant and the kernel. Pl-Rh and 
PI-Bh have essentially identical DNA sequences, but PI-Bh DNA is 
hypermethylated relative to Pl-Rh. The degree of methylation 
correlates with the phenotype (more methylated, less pigment) 
and with mRNA levels (more methylated, less mRNA) (Cocciolone 
and Cone, Genetics 135:_575, 1992). In other systems, transcrip
tionally inactive genes are frequently methylated and located in 
tightly packed or condensed chromatin (Eden and Cedar, Curr Op 
Genet Dev 4:255, 1994). If this trend holds for the Pl gene, then 
the chromatin structure of Pl-Rh should be more "open" than that 
of PI-Bh. 

To address this prediction, we compared the chromatin struc
ture of the two Pl alleles using a nuclease protection assay 
(Spiker, Murray and Thompson, PNAS USA 80:815, 1983). In 
this type of assay, "open" chromatin should be more accessible to 
nuclease digestion than tightly condensed chromatin. Nuclei from 
Pl-Rh and PI-Bh husks were incubated with the nuclease DNase I. 
The DNA was purified, digested with restriction enzymes, and 
analyzed on Southern blots. The results indicated that both genes 
are susceptible to DNase I cleavage at the same sites within the 
coding region in 5' flanking sequences. However, Pl-Rh is more 
susceptible to DNase I digestion than PI-Bh. These observations 
are consistent with our expectations. Pl-Rh and PI-Bh were pre
dicted to share the same DNase I sensitive sites, as an active PI
Bh should be indistinguishable from Pl-Rh. Furthermore, the en
hanced susceptibility of Pl-Rh correlates with its higher tran
scriptional activity and lower level of DNA methylation. Future 
experiments will be aimed at investigating chromatin structure of 
the two alleles in the kernel as a step in trying to explain the ec
topic expression of PI-Bh in the kernel. 

An allele of sh2 
--Neuffer, MG 

An allele of sh2, sh2-N2340, had been produced by Dr. Gyula 
Ficsor, using EMS treatment of mature kernels of a purple kernel 
ACR line. It expresses as a partially collapsed kernel that resem
bles denting or a less extreme expression of sh1. It is dominant to 
the reference sh2 allele and has about the same viability. Stocks 
are available at the Co-op. 

COLUMBIA, MISSOURI 
USDA-AAS and University of Missouri 
ATHENS, GEORGIA 
USDA-AAS 
TIFTON, GEORGIA 
USDA-AAS 

Lost locus resurfaces? lhe possible involvement of brown peri
carp1 in detennining silk maysin concentration 

--Byrne, PF; McMullen, MD; Snook, ME; Musket, T; Widstrom, 
NW; Wiseman, BR and Coe, EH 

Concentration of maysin, a C-glycosyl flavone, in maize silks is 
an important resistance factor against the corn earworm, Helicov
erpa zea (Boddie). Because maysin synthesis occurs as a branch 
of the flavonoid metabolic pathway, our research has sought to 
identify and estimate the contributions of loci from that pathway 
that affect maysin levels. 

In a study of the population (GT114 x GT119)F2, silk maysin 
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concentrations of 285 plants were measured .with reversed-phase 
HPLC. RFLP analysis was conducted on the same plants, using 
probes encoding flavonoid pathway enzymes or linked marker loci, a 
total of 39 loci distributed on all chromosomes except chromosome 
8. Single-factor analysis of variance was used to detect signifi
cant associations between maysin concentration and genotypic 
classes at individual RFLP loci, based on a comparison-wise error 
rate of 0.05. Epistasis was evaluated by testing the significance 
of all possible pairwise combinations of loci (excluding closely 
linked loci) in two-way analyses of variance. 

Last year (MNL 69:53-54) we reported the results of our 
analysis to date: major effects on maysin concentration were as
sociated with the pt region of chromosome 1 (accounting for 58% 
of the total phenotypic variance) and the ct - bzt region of chro
mosome 9 (accounting for 6.7% of the variance). We were uncer
tain which locus in the latter region affected maysin levels, but felt 
that ct was a likely candidate because of its partial homology with 
p 1, its similar role as a pathway regulator, and testcross results 
indicating different ct alleles in GT114 and GT119. 

To better estimate the position of the responsible locus on 
chromosome 9, we probed for additional loci on either side of the 
ct - bzt region, namely umc109, umc105a, wxt, and csu147. Anal
ysis of variance showed a peak in percent variance explained 
(10.8%) at umc105a, midway between bzt and wxt. This position 
is close to the reported location of brown pericarpt (bp 1) 
(Meyers, Ohio J. Sci. 5:295-300, 1927; Emerson et al., Cornell 
Univ. Agric. Exp. Stn. Memoir 180, 1935). The homozygous reces
sive condition at that locus together with a functional p 1 factor 
for pericarp color was reported to result in the production of 
brown pigmentation in the pericarp in place of red phlobaphenes. 
Though bp1 was identified and mapped over 60 years ago and in
cluded on linkage maps for many years, stocks containing the mu
tation have apparently been lost, and the locus was removed from 
working maps in 1983. We believe that the locus detected in our 
study by umc105a may be bp1 for the following reasons: 

(1) The agreement in chromosome location, approximately mid
way in the interval between bzt and wxt. 

(2) Identical interactions with the p 1 locus. In our study, 
umc105a affected maysin concentration only when it was homozy
gous recessive and a functional pt allele was present, i.e., only when 
the pathway was activated by pt. These are the same conditions 
required for observation of the brown pericarp phenotype. 

(3) Parallels with a 1-controlled brown pericarp. Recessive a 1 
plus dominant pt produce brown pericarp and is reported to also 
enhance accumulation of C-glycosyl flavones, the class which in
cludes maysin, in pericarp and silks (Styles and Ceska, Can. J. 
Genet. Cytol. 19:289-302, 1977; Styles & Ceska, Maydica 
34:227-237, 1989). A block at the at step in the pathway leading 
to phlobaphenes and 3-deoxyanthocyanins (Fig. 1) presumably 
leads to a build-up of flavanones and other intermediates, some of 
which are then shunted into the flavone branch of the pathway. 
Because of the similarities of effects, the site of action of bp 1, 
like that of a 1, seems likely to be in the pathway leading from fla
vanone to 3-deoxyanthocyanins and phlobaphenes. 

To determine whether GT119, the source of the umc105a allele 
conditioning higher maysin values, carries a recessive allele at bpt, 
we plan to cross the line to a red pericarp stock. F2 progeny that 
segregate for brown pericarp would support, but not prove, a re
cessive bp1 allele in GT119. To conduct additional experiments we 
continue searching for an existing bp 1 stock; we would appreciate 
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Figure 1. Part of the pl-controlled portion of the flavonoid pathway in maize. Loci are shown in 
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one enzyme. 

hearing from MNL Cooperators having such a stock or additional 
information about bpt. 

CORVALLIS, OREGON 
Oregon State University 

Effects of somatic embryogenesis and genetic background on the 
phenotype of the shootless mutant dksB 

--Hardeman, K and Rivin, CJ 

In the W22 background, the mutation dksB results in small 
seeds that contain no observable shoot component and yet produce 
a functional root meristem, and a normal appearing cotyledon. 
Although the dksB mutant kernels are capable of germinating a 
primary root, the root is devoid of any root hairs. To determine if 
the dksB mutation was due to a lack of function in the seed or the 
embryo itself we asked if somatic embryos also had a shootless 
phenotype. To undertake this experiment, we introduced the dksB 
allele into the maize line H99 because it forms embryonic callus at 
high frequencies. 

Interestingly, we found that the phenotype of the dksB kernels 
in H99 was significantly altered from the previously defined dksB 
phenotype. When the H99 dksB kernels were germinated on a 
hormone-free growth medium, they germinated into seedlings 
having pale leaves and seminal roots which, like the primary root, 
lacked root hairs. The seedlings died after expanding 5-6 leaves. 
We are further characterizing the phenotype of the H99 dksB 
seedlings and attempting to determine the basis for the change in 
phenotype in the H99 background. 

To determine if the dksB mutation was autonomous to the em
bryo, we derived embryogenic callus from wildtype and mutant 
embryos, induced them to form somatic embryos, and determined 
their phenotypes. The results, shown in Table 1, show that the 
phenotypes of the somatic embryos reflect the phenotype of the 
callus source: Somatic embryos derived from wildtype callus 

formed green shoots and roots with root hairs, while the dksB so
matic embryos were either shootless or made a pale sickly shoot 
and in either case the roots lacked root hairs. This result sug
gests that the defect in dksB mutant development is embryo-au
tonomous. 

Table 1. Summary of tissue culture experiment. 

Mutant embryos: 
Total embryos used: 144 
Total forming callus: 94 
Total forming organs: 42 

root and shoot: 15 
root only: 27 

Note: all roots lacked root hairs and all shoots 
were pale and slow growing. 

Wildtype embryos: 
Total embryos used: 279 
Total forming callus: 232 
Total forming organs: 102 

root and shoot: 100 
root only: 2 

Note: roots made root hairs and shoots were green 
and grew well. 

GA signalling in the developing embryo: evidence for a GA/ ABA 
balance governing vivipary and maturation 

--White, CN; Proebsting, WR and Rivin, CJ 

The hormone abscisic acid (ABA) plays a central role in sup
pressing precocious germination in developing maize seeds and in 
modulating the expression of maturation phase genes. Kernels 
that are blocked in ABA synthesis do not mature to dormant, des
iccation-tolerant seeds, but instead germinate on the ear midway 
through kernel development. This precocious germination has been 
widely considered to be a default developmental program, but it is 
also possible that ABA is required to counteract a hormonal ger
mination signal. Because gibberellins (GAs) and ABA act antago
nistically in many aspects of plant development, we hypothesized 
that ABA antagonizes a positive GA signal that induces precocious 
germination, and perhaps also suppresses maturation phase gene 
expression. This model makes three testable predictions: 1) 
Active GAs should be present in pre-maturation phase embryos, 
2) reduced GA levels should suppress precocious germination in 
ASA-deficient kernels, and 3) inhibition of GA synthesis may in
duce the expression of maturation phase mRNAs in the absence of 
exogenous ABA. In a series of experiments, we obtained data in 
support of each of these predictions. 

Using gas chromatography-mass spectroscopy, we measured 
GA and ABA levels in developing wildtype maize kernels over the 
course of development. Seven different GAs were identified in 
developing seeds, two of which are known to have biological activ
ity, GA1 and GAa. As shown in Figure 1, these GAs are present in 
pre-maturation stage embryos, reaching maximum levels during a 
developmental window just prior to the peak in ABA accumulation. 

To gauge the developmental role of embryo GA, we conducted 
experiments to manipulate the relative GA and ABA levels over the 
course of kernel development. Seeds deficient in ABA were cre
ated by spraying developing wildtype ears with fluridone, or by 
using vp5 ( viviparous) segregating ears. Reductions in GA levels 
were achieved through the use of the GA biosynthesis inhibitors 
paclobutrazol and ancymidol or by genetic blocks with either 
dwarft or dwarf5. We found that vivipary of ASA-deficient ker
nels was highly suppressed in the dwarf background and in ears 
that were treated with GA biosynthesis inhibitors prior to stage 
2. The resulting seeds are both dormant and desiccation-tolerant. 
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Figure 1. Temporal accumulation of GAs In developing kernels. 

In contrast, a GA deficit was found not to suppress vivipary in vp1 
mutant kernels, which have normal ABA levels, but exhibit no seed
specific ABA responses. 

When GA biosynthesis inhibitors were applied to cultured em
bryos, they mimicked the effects of ABA, by suppressing germi
nation and inducing the accumulation of maturation-phase mRNAs. 
Figure 2 shows the accumulation of maturation mRNAs in pre
matu ration embryos cultured for three days in media supple
mented with paclobutrazol ± GA or ABA± GA. The ASA-in
ducible mRNAs in the northern blots are undetectable in pre-mat
uration phase embryos and are precociously expressed in culture 
upon treatment with exogenous ABA. As shown, paclobutrazol 
treatment also induced these mRNAs, while the addition of exoge· 
nous GA reduced their steady state levels. The ASA-inducible 
messages also require the Vp1 gene product, but Vp1 mRNA lev
els were not affected by these culture treatments (bottom 
panel). 

From these results, we speculate that GA present in the early 
developing embryo stimulates a developmental program leading to 
vivipary in the absence of sufficient levels of ABA . When GA lev
els are reduced, an ABA/GA ratio is established that is appropri
ate for the suppression of germination and the induction of matu
ration-phase gene expression in ASA-deficient kernels. The fail-
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Figure 2. GA biosynthesis inhibition mimics ABA effects on cultured embryos. 

ure to suppress vivipary via reduction of GA levels in vp1 kernels 
suggests that the Vp 1 product functions downstream of the sites 
of GA and ABA action in programming seed development. 

CORVALLIS, OREGON 
Oregon State University 
ALBANY, CALIFORNIA 
Plant Gene Expression Center 

The maize shootless mutation dksB does not map to known 
Knotted-like genes or shootless dek loci 

--Hardeman, K; Chuck, G; Hake, S and Rivin, CJ 

The shootless mutation dksB (gefective kernel §.hootless Mu~) 
leads to small seeds that contain an embryo with a functional root 
meristem and normal appearing cotyledon, but no observable shoot 
components. Previously, dksB was found to cosegregate with a 
MuB-hybridizing fragment in 70 individuals (Sollinger and Rivin, 
MNL 67: 34-35, 1993). As we have only one allele of dksB, we 
were interested in determining its map position to allow us to de
termine if any previously isolated defective kernel mutation 
mapped to a similar location. In addition, we were interested in 
whether any of the Knotted-like genes in maize mapped to the 
dksB location, as a shootless mutation in Arabidopsis has been 
shown to be mutated in an Arabidopsis Kn1-like gene (J. Medford 



and K. Barton, pers. comm). 
The Mu8-hybridizing fragment that is tightly linked to dksB 

was cloned and the flanking region was assigned the map location 
2S-36 using the recombinant inbred (RI) family Tx303 x CO159. 
Therefore, the dksB mutation resides on chromosome arm 2S. 
Two defective kernel mutations have previously been mapped to 
chromosome arm 2S, et2 and dek3. Allelism tests revealed that 
dksB. is not allelic to et2. Allelism tests with dek3 are in progress. 
No known Knotted-like genes map to this area of 2S. 

The MuB flanking sequence appears to represent a gene with 
two copies in the genome, as it was found to hybridize less 
strongly to an additional fragment. This other locus was also 
mapped using the RI family Tx303 x Co159 and it maps to position 
10L-116. 

DEFIANCE OHIO 
Defiance College 

Epigenetic programming of paramutant R allele expression with 
light and temperature conditions applied at a specific stage of 
seedling development 

··Mikula, BC and Kappen, T 

R. A. Brink reported in 1956 that paramutation at the r locus 
contradicted a basic assumption of Mendelian genetics: alleles 
emerge from heterozygotes unchanged. The regularity of the 
phenomenon of paramutation has made it possible to challenge an
other assumption of Mendelian genetics: that environmental con
ditions have no heritable effect on gene expression. Under para
mutagenic conditions all R alleles from a heterozygote with R-st 
are heritably changed. A weakly paramutagenic R-st allele re
duces R pigment expression to an intermediate level of variega
tion. Since all R alleles are changed under paramutagenic condi
tions, the regularity of paramutation presented threshold condi
tions which made it possible to show that environmental conditions 
can cause heritable changes in the expression of a particular allele. 
Compared with the inflexibility of standard Mendelian genes, there 
was, with paramutation at the r locus, a high probability of being 
able to assay the environmental influence on paramutant R allele 
expression in a single generation in an inbred line and thus avoid 
segregating modifier arguments. We reported in MNL 67, 68 and 
Genetics 140: 1379-87 conditions and times during early develop
ment when different levels of paramutation could be programmed. 
In MNL 66 we reported testcrosses from early pollen samples of 
plants, which as seedlings received specific light and temperature 
conditions, showed higher levels of paramutation (more weakly 
variegated) than those pollen samples made seven days later from 
the same plant. 

The differences in paramutation between early and late polli
nations suggested that a gradient of paramutation could be found 
if pollen was sampled from a single plant over the duration of an
thesis, usually seven to eight days. Figure 1 shows frequency his
tograms for pigment scores of kernels from testcrosses of a sin
gle plant made each of the eight days that pollen was shed. 50 
kernels from each of the eight testcross ears were scored for the 
level of R pigment variegation by matching each kernel against a 
set of 20 standard kernels. The frequencies of kernels that score 
as weakly pigmented (highly paramutated) appear on the left half 
of each histogram; more fully pigmented kernels are positioned in 
the score categories to the right half of each histogram. The 
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Figure 1. Testcross kernel scores from a single plant showing the frequency of weakly pig
mented and strongly pigmented kernels In testcrosses made each day over the eight days that 
pollen was shed. 50 pigmented kernels from each testcross ear were scored against a set of 
21 standard kernels ranging from colo~ess to fully pigmented, 1 to 21 respectively. With each 
day that pollen was tested, frequency histogram profiles are gradually skewed to the right as 
anthesis progresses down the tassel. 

seedling was raised in 22 C continuous light (LL) conditions for 15 
days then shifted to 12 hr light-dark cycles (LD) for six days be
fore removal to field conditions for testcrossing at maturity. 

The pollen collections from the first three days that pollen was 
shed show most kernels scored in the lower half of the scoring 
range (fewer pigmented cells, most paramutation). The last three 
histograms show most kernel pigment scores in the upper half of 
the scoring range (least paramutation). When all eight histograms 
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are compared, sequentially, the transition from frequencies of 
least to most pigmented kernels is visible as a gradient over the 
eight days of anthesis. 

The pollen collections of Figure 1 represent epigenetic re
sponses to controlled environmental conditions applied at a spe
cific stage of development. More extreme changes in paramutation 
of R allele expression in response to environmental conditions can 
be seen in Figures 2 and 3. Kernel pigment-score profiles are 
skewed to the right and left halves of the histograms, respec
tively. All plants tested in Figures 2 and 3 were started in LL 
conditions at 22 C. Figure 2 represents testcross scores of ker
nels from eight plants that as seedlings received 12 hr LD cycles 
at 22 C for days 16-21. The darkest testcross pigment scores 
(least paramutation) were found in the last pollinations of single 
plants. Figure 3 shows pigment scores for testcrosses from the 
lowest tassel branches of seven plants that as seedlings were 
subjected to LL conditions at 32 C, days 15-21. These pigment 
scores are skewed to the left half of the histogram (more paramu
tation). 
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Figure 2. Testcross scores of 50 kernels from each of eight plants which as seedlings received 
four LD cycles at 22 C followed by two LL cycles at 32 C, days 16-21. Up to day 16, seedlings 
were held in 22 C LL oonditions. 
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Figure 3. Testcross scores of 50 kernels from each of seven plants which as seedlings received 
seven 32 C LL cycles, days 15-21. Up to day 15, seedlings were held in 22 C LL conditions. 

Figure 1 shows that different levels of epigenetic program
ming of R allele expression can be directed selectively at the earli
est gametes from the upper part of the tassel or at the last ga
metes shed from the lower branches of the tassel. Figures 2 and 3 
show that under different controlled conditions more or less 
paramutation can be programmed into the gametes from the up
per or lower part of the inflorescence. The differences in gamete 
expression, under paramutagenic conditions, are the product of 
environmental conditions administered to meristematic tissue at a 
specific stage of development, the period during which the plant is 
susceptible to floral induction. Specific environmental conditions 
applied at the time of change-over from vegetative to floral 
stages of development identifies a threshold that makes it possi-
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ble to regard the differences in the level of paramutant R allele 
expression as a useful reporter system for the more significant 
epigenetic event, that of floral induction. Significant differences 
in the number of nodes, tassel branches and time to anthesis (MNL 
66) correlate with the differences reported as paramutation 
scores in the aleurone layer of the seed. Is it possible the r locus, 
responsible for a transcriptional activator, may play a more signif
icant role in development than just the control of kernel pigment? 

Since paramutation has been reported to be associated with 
methylation, the above information suggests a stage during devel
opment when methylation at the r locus can be initiated. The in
duction of change from vegetative to floral development is methy
lation associated in a species of Arabidopsis (Burn et al., Proc. 
Nat. Acad. Sci. 90:287-291 ). Light and temperature signals that 
time plant development in transgenic petunias are found to be 
highly correlated with methylation changes (P. Meyer et al., Mol. 
Gen. Genet. 243:390-399). Cause and effect relationships have 
been difficult to resolve in methylation studies. The epigenetic 
programming of the r locus as well as transgenes in petunia sug
gest that control of light and temperature conditions during early 
development will be essential if methylation is to be resolved as 
cause or effect when associated with gene programming. 

DURHAM, NORTH CAROLINA 
Duke University 

Promising germplasm for rootworm resistance in maize 
--Eubanks, M 

In 1972, Branson and Guss (Entomol. Soc. Amer. Proc. North 
Central Branch 27:91-95 ) reported resistance to corn rootworm, 
Diabrotica virgifera Leconte, in eastern gamagrass, Tripsacum 
dactyloides L., a wild relative of maize. In 1993 (MNL 67:39-41) 
and 1994 (MNL 68:30-41 ), I reported evidence from petri dish 
and pot bioassays for rootworm resistance in maize that was 
crossed with a hybrid between diploid perennial teosinte, Zea 
diploperennis lltis (Doebley and R. Guzman) and T. dactyloides. 

Additional pot bioassays have been conducted to address the 
question of whether rootworm resistance is expressed in accor
dance with Mendelian segregation in the Z. diploperennis-T. 
dactyloides hybrid referred to as Tripsacorn. In the first of 
these, 13 Tripsacorn S 1 plants, grown in 4 inch pots, were in
fested with 50 Western corn rootworm larvae each, 30 days after 
germination. Within a few days after infestation, two plants died 
and two more exhibited severe lodging. Two weeks after infesta
tion, plants were removed from pots and roots were washed for 
examination. Roots ranged from severely eaten to traces of larval 
feeding and extensive root growth. Four of the plants were iden
tified as susceptible and nine plants considered resis
tant/tolerant. A chi square value of 0.25 is obtained from these 
numbers based on expected ratios of 3:1. Such deviation would be 
expected 50% of the time due to chance alone. The segregation 
ratio approaching 3 resistant to 1 susceptible suggests Mendelian 
segregation for a dominant gene for resistance. 

Another bioassay was conducted with a total of 20 Tripsacorn 
S1 plants: 16 treatment and 4 control plants. Seed was germi
nated on moist filter paper in petri dishes and seedlings were 
transferred into 4-inch pots. Infestation of 50 newly hatched 
Western corn rootworm larvae was at 6 weeks after planting. 
Plant height was measured weekly throughout the trial. Seventeen 



days after infestation, the plants were removed from pots and 
roots gently washed for examination under a microscope. Four 
plants had no feeding scars, 8 had minor feeding damage, and 4 
had extensive feeding. Results signal homozygous dominant plants 
are more resistant than heterozygous plants, and homozygous re
cessive plants do not carry resistance. 

An interesting phenomenon was observed in this bioassay. The 
record of plant height revealed a noticeable spike in plant growth 
at time of infestation when compared with control plants. Infes
tation appears to stimulate a growth hormone response concur
rent with a defence response by infested plants carrying the re
sistance gene. 

Another pot bioassay conducted under the same conditions as 
the previous one tested S1 plants of Sun Star, a new hybrid be
tween Z. diploperennis and a diploid T. dactyloides (all previous 
hybrid plants tested were derived by crossing Z. diploperennis 
with a tetraploid Tripsacum). Out of 16 Sun Star plants, 4 were 
albino and died. The remaining 12 showed no feeding damage, indi
cating Sun Star is another promising source for rootworm resis
tance. 

Bioassays testing Z. diploperennis-T. dactyloides hybrids, re
ferred to as Tripsacorn and Sun Star, indicate there is a gene for 
resistance to corn rootworm that is inherited in accordance with 
Mendelian segregation. These plants provide a genetic bridge for 
moving rootworm resistance from Tripsacum into maize. 

FREIBURG, GERMANY 
Universitat Freiburg 

Juvenile-adult phase transition of vegetative traits is not af
fected in the root deficient mutant rtcs 

--Hochholdinger, F; Hetz, W and Feix, G 

Vegetative development of maize can be divided into a juvenile 
and an adult phase. Each phase is characterized by specific traits 
that appear in two distinct forms during development (Lawson 
and Poethig, TIG 11 :263-268, 1995). Juvenile traits always ap
pear in basal parts of the maize plant, since the polar growth of 
the apical shoot meristem separates the juvenile and adult phase 
spatially as well as temporally. The transition between the phases 
is however gradual. The most obvious phase specific markers are 
presence or absence of epicuticular waxes and epidermal macro
hairs on the leaf blade. Beside some further leaf and shoot related 
traits, the presence of "adventitious roots" (crown roots) is a 
distinct juvenile trait (Moose and Sisco, Plant Cell 6:1343-1355, 
1994). 

The mechanism of the juvenile adult transition is unknown, how
ever it is assumed that the root stock exerts an influence on the 
transition. This allusion was now tested with help of the root defi
cient mutant rtcs recently isolated by us (Hetz et al., MNL 66:45, 
1992). 

rtcs is characterized by a drastically reduced root system, 
lacking also the "adventitious" roots considered as a juvenile vege
tative trait. Instead of the complex root system of a wild type 
plant, consisting of a primary root, lateral seminal-, crown-and 
brace roots, the mutant rtcs displays only a primary root, which is 
nevertheless sufficient to produce a fertile plant. The rtcs plants 
were now used for a study of occurrence and timing of the 
juvenile-adult phase transition by examining in comparison to wild 
type siblings the phase specific markers of the leaf epicuticular 

wax formation (examined by toluidin blue staining) and the 
formation of macrohairs. Surprisingly we could not detect any 
significant difference between rtcs and wild type plants in the 
expression of these traits (Table 1 ). Also the total number of 
leaves in wild type and rtcs showed no significant difference. 

Table 1. Epicuticular wax and hairs in wildtype and rtcs plants. 

Irnil 
Total number of leaves 
First leaf with hairs 
First leaf partially lacking wax 

Yllld lYJle (14) 
13.9±0.6 
5.6±1.2 
7.1±1.0 

~.illl. 
12.5±0.B 
6.1±0.B 
7.3±1.1 

Each value is the average ± two standard errors. The averages for rtcs mutants are paired 
with the averages for their wild type siblings. The number of plants of each type is given in 
parantheses. 

At the time of the juvenile-adult phase transition (between 
leaf 5 and 7 in our case) the wild type had formed primary-, lat
eral seminal-and crown roots whereas rtcs displayed only the pri
mary root. So far we have not made a quantitative determination 
of the total size of the root system of wild type and rtcs plants 
at the time of the juvenile - adult transition by determining the 
root length and weight of all roots present at this time. The re
sults of such experiments might give more detailed insights into 
the question, to what extent factors produced by the root system 
in general or more specifically by particular roots promote the ju
venile phase or inhibit adult development. In this case phase change 
might be sensitive to the size of the root system as discussed in 
Lawson and Poethig (1995). 

Genomic organization of the maize HMGa gene 
--Krech, AB; Grasser, KD and Feix, G 

High mobility group (HMG) proteins are abundant non-histone 
proteins of the eukaryotic chromatin with assumed functions in 
chromatin structure and its regulated expression. In maize, four 
different HMG proteins (a, b, c and d} have been identified. In the 
case of the HMG-box containing HMGa protein, studies have so far 
been performed with a cloned cDNA (Grasser and Feix, Nucl. 
Acids Res. 19:2573-2577, 1991) and with isolated and 
recombinant proteins (Grasser et al., Plant J. 6:351-358, 1994). 
Our current work on the genomic organization of HMG coding 
sequences (working with Southern analysis and cloned genomic 
fragments) revealed that several HMG protein coding sequences 
(complete and fragments) are scattered in the genome. In addition 
to the gene (consisting in the coding region of seven exons) three 
separate single exon containing fragments and a complete retro
pseudogene have been identified. This finding reminds us of the 
results obtained with the human HMG system (Stros and Dixon, 
Biochim. Biophys. Acta 1172:231-235, 1993). Our current picture 
of the HMGa gene system is summarized in the scheme on the 
following page. 
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Structure of the HMGa gene and genomic fragments 

The HMGa gene and the fragments GEXON2 and GEXON6 were obtained by screening genomic libraries prepared from maize line A619. The structure of ZMHMG was taken from the literature 
(Yanagisawa andlzui, Plant Mal. Biol. 23:915, 1993). The retropseudogene was obtained by PCR amplifications from DNAs of different maize lines including A619. The cDNA was previously 
isolated from a cDNA library (Grasser and Faix, 1991). The -helices I, II and Ill are part of the HMG-box DNA binding domain. 

GAINESVILLE, FLORIDA 
University of Florida 

The maize inbred line Va20 carries a new restoring gene for S
type cytoplasmic male sterility (CMS) 

--Kamps, T and Chase, C 

CMS is the maternally inherited inability to shed viable pollen, 
and a CMS plant is male sterile unless it carries the appropriate 
gene that restores fertility. These restorer genes are generally 
referred to as restorers of fertility (R~. In maize, three major 
groups of male sterile inducing cytoplasms occur and these groups 
are, in part, defined by their nuclear restorer genes. Our investi
gations have focused on fertility restoration of the S-type cyto
plasm. 

CMS-S maize plants are characteristicaly restored to fertility 
by the gametophytically expressed nuclear gene, Rf3. Additional 
CMS-S Rf genes were uncovered among unexpected male fertile 
progeny by Laughnan and Gabay (Maize Breeding and Genetics, 
pp. 427-447, 1978). These new restorers are distinct from Rf3 
by map positions and, with the exception of Rf/V, by their 
deleterious pleiotropic effects. Laughnan and Gabay tocalized the 
position of Rf3 to the long arm of chromosome 2 (2L). We have 
since identified a more precise location of the Rf3 gene from the 
inbred Ky21 (S) (Rf3-Ky21) to be in the interval between whp 
and bn/17.14 (MNL 66:45, 1992). 

Linkage analyses for fertility restoration by the inbred lines 
CE1 (Vg) and Va20(CA) were also performed. An analysis of 45 
testcross progeny revealed the estimated map position of CE1 re
storer (Rf3-CE1) to be 8.9 cM distal to whp and 8.9 cM proximal 
to bn/17. 14. This is similar to the results reported for the Rf3-
Ky21 gene. Conversely, analysis of Va20(CA) testcross progeny 
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showed no linkage of fertility restoration with either the whp or 
the bn/17. 14 marker. Neither was linkage detected with other 2L 
RFLPs including npi291, npi297, npi122, npi456 and npi298, indi
cating that the Va20(CA) restorer was not allelic to either Rf3-
CE1 or Rf3-Ky21. 

The population from the three-way-cross W182BN(CA) X 
[Va20(CA) X Ky21 (S) was generated to conduct a direct linkage 
analysis between the Va20(CA) restorer and Rf3-Ky21. All but 
one of 76 progeny examined were semi-fertile, i.e. shed pollen was 
composed of approximately 50% normal, starch-filled grains and 
50% aborted, empty grains as expected for gametophytic re
storer genes. Southern analysis with the Rf3-Ky21 linked mark
ers, whp and bn/17. 14, showed a segregation ratio of 2 Ky21 : 1 
Va20 alleles. This segregation pattern is indicative of two major 
unlinked gametophytically expressed restorer genes and is consis
tent with our earlier data. 

Additional studies compared fertility restoration in F1 and 
BC1 populations generated by crossing the Va20(CA), Ky21 (S) 
and CE1 (Vg) with four different male sterile inbreds. Male 
fertility was assessed by examining pollen shed from individual 
progeny. Va20 progeny were more variable in male fertility than 
either CE1 (Vg) or Ky21 (S) and exhibited the most frequent 
occurrence of unexpected male steriles. Some Va20 F1 hybrid 
combinations produced male steriles whereas all hybrid 
combinations using either Ky21 (S) or CE1 (Vg) parents were 
semi-fertile. Furthermore, we have observed that populations 
generated by recurrent crossing of Va20 restored progeny to the 
male sterile inbred W182BN(CA) tend to show an increase in male 
sterility. These sterility data combined with the linkage analysis 
suggest that the Va20 CMS-S restorer system is unique and is 
likely more complicated than the classic CMS-S restorer, Rf3. 



The Va20 inbred does not exhibit any of the deleterious effects 
characteristic of the 9 "new" CMS-S restorers reported by 
Laughnan and Gabay. The possibility that the Va20 restorer and 
Rf/V are different genes has yet to be examined. This can initially 
be achieved by conducting a direct linkage experiment, like that 
described above, between these two restorers. 

HAIFA, ISRAEL 
Newe Ya'ar Research Center 
URBANA, ILLINOIS 
University of Illinois 

Mapping of RAPD markers linked to chromosomal regions affect
ing sugar accumulation in sugary enhancer sweet corn 

--Katzir, N; Tadmor, Y; Juvik, J and Bar-Zur, A 

The objective of our study was to map genes affecting charac
teristics associated with the se gene. RAPD analysis of Nils was 
used to identify putative informative primers. Two pairs of Nils 
(IL678a and IL451 b), which differ for the se mutation, and 
IL677a, the original su1 set line, were compared. Three hundred 
and forty arbitrary, ten-mer primers were used to amplify the 
different genotypes. Of the 340 primers, only one, OPN20, gen
erated an amplification product (675 bp long) which was present 
in all three su1 set genotypes, but not in their sut Se isolines. Two 
primers, UBC281 and UBC425, generated products (900 and 
700 bp, respectively) that were polymorphic between one pair of 

ch. 3 ch. 6 
Dist Marker 

Dist 
Marker cM cM 

bnlB.15 umc36b 
13.7 

UBC281-900 
38.7 - 7.2 

13.4 UBC425-700 

umc18 9.5 npi245 

7.9 p200854 
28.3 - umc59 16.8 

npi276a npi373 
15.2 -

umc50 
43.1 14.9 -

OPN20-675 
19.5 - npi560 

umc60 19.0 
18.2 - umc113b 

bnl15.20 19.6 
23.5 - dhn1 

umc16 
22.1 -- 40 .7 -

umc3 
12.8 -- p100016 sh2 
16.5 -

p100080 
22.9 -

npi420 

Figure 1. Chromosomal location of OPN20-675, UBC281-900 and UBC425-700 (the second 
number is the size of the amplification product in bp). 

Nils (IL678a}, but not between the other pair of NIL (IL451 b). 
These two products were also produced by IL677a. 

The three RAPD bands, described above, were mapped to 
chromosomes 3 and 6 adjacent to umc50 and umc59 respectively 
(Fig. 1) using the W6786 sut Sex IL731 a sut se F2:3 population 
(Tadmor et al., Theor. Appl. Genet. 91 :489-494, 1995). These 
regions were reported there as being associated with kernel sugar 
content. In that study the set locus was mapped to the long arm of 
chromosome 2 adjacent to umc36. Interestingly, all three RAPD 
markers were mapped to two chromosomal areas affecting sugar 
and taste (Azanza et al., Genome, in press), yet none was mapped 
to the set location on chromosome two. RFLP analysis of the same 
two pairs of Nils with umc36 did not detect polymorphism. 

Elevated sugar content was one of the criteria in the develop
ment of the Nils and is a major characteristic by which se is se
lected in breeding programs. Our data indicate that more than 
one locus effects elevated sugar content in su1 kernels. This 
demonstrates the complication in the phenotypic selection for sut 
se genotype and the advantage of Marker Assisted Selection for
the se phenotype. 

HAMBURG,GERMANY 
University of Hamburg 

Chalcone synthase antisense expression in transgenic maize leads 
to white pollen phenotype 

--Muller, E; Ulrich, S and Wienand, U 

Constructs containing the maize chalcone synthase cDNA ( C2) 
in the antisense orientation were transformed into the maize line 
H99 via particle bombardment of 13 DAP embryos. Transgenic 
plants derived from independent transformation events were ana
lyzed for their phenotype and chalcone synthase expression. The 
most noticeable phenotypic alteration was the complete loss of 
colored tissue in the transgenic plants, especially in the stem and 
anther tissues. The pollen of the primary transgenics was differ
ent in color from the wild type pollen and had the white color typi
cal for the white pollen mutation (c2, whp). Analysis of the pollen 
indicates that no or only little amounts of flavonoids were pro
duced. The outcrossed population could be easily screened using 
the colorless (green) phenotype of the seedlings as a selectable 
marker to identify progeny containing the antisense gene. These 
plants are currently under further investigation. 

IBARAKI, JAPAN 
Institute of Radiation Breeding 

Induction of bicellular pollen and dihaploidization of tetraploid 
maize 

--Kato, A 

Recently, antimicrotubule agents have been used in chromosome 
doubling in maize anther culture. These chemicals were originally 
developed as herbicides. Compared with colchicine, they are very 
cheap and effective. Trifluralin is one of them and I examined the 
effect of trifluralin on in vivo maize microsporogenesis and suc
ceeded in the induction of restituted bicellular pollen. 

I sprayed 0.05-0.2% of a Trefanocide (44.5% trifluralin 
emulsion) solution (with the addition of 0.1 % of spreading agent 
Al soap) on the tassels of a diploid inbred line Oh43 at 8-1 O days 
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before flowering. At that time microspores in the anthers were at 
the monocellular to bicellular stages. Microscopic observation 
revealed the presence of restituted bicellular pollen grains (Fig. 
1) mixed in the normal tricellular pollen grains in the 0.2% treat
ment. The sperm cells in the bicellular pollen grains were diploid 
since they presumably originated from the nondisjunction of the 
chromosomes at the second pollen mitosis. 

Figure 1. Reslltuted blcellular pollen grain Induced by trlfluralln treatment (S - spenn cell, V -
vegetative nucleus). 

The ears pollinated with the treated pollen exhibited an in
creased number of shriveled kernels which resembled a 2n x 4n 
cross in maize (Fig. 2). In the 0.2% treatment, 46% of the kernels 
were shriveled (Table 1 ). Thirty-seven percent of the shriveled 
kernels had a small embryo. I carefully planted the shriveled ker
nels in moist vermiculite but none of them germinated. 

Table 1. Kernel development on the ears pollinated by trifluralin-treated pollen. 

Trefanocide 
concenJratton 1%) 

0.0 
0.05 
0.1 
0.2 

No. of ears 
llQllinalad 

3 
2 
2 
7 

No ol pJumo kernels 
977 (99.4} 
710 (98.6} 
519 (86.2) 
694 (54.0) 

No. of shriveled 
~ 
6 (0.6} 

10(1.4) 
83 (13.8) 

590 (46.0) 

The restituted bicellular pollen has only one sperm cell. If the 
sperm cell fertilizes only polar nuclei and if the egg cell is not fer
tilized, the ovule may develop into a haploid kernel. I determined 
whether the bicellular pollen produced by diploid plants induced 
dihaploids on tetraploid maize ears. I pollinated the ears of a 
tetraploid maize line 028-1 with trifluralin-treated Oh43 pollen 
(0.3% Trefanocide solution). I obtained 117 plump kernels from 
the seven ears. Ploidy levels of the 85 seedlings among them were 
determined: 65 seedlings were tetraploid, 12 were triploid and 
eight were diploid. The tetraploid cases may have originated from 
the union of a diploid sperm cell and diploid egg cell and the 
triploid cases from the union of a haploid sperm cell and diploid 
egg cell. In both cases polar nuclei must have been fertilized by a 

26 

Figure 2. Control ear (left) and ear pollinated with trifluralin (0.2% Trefanoclde sotutlon)-treated 
pollen (right). 

diploid sperm cell, because the union of polar nuclei (2n+2n) of 
tetraploid maize and a haploid sperm cell (n) should result in the 
development of shriveled kernels. The eight diploid cases were at
tributed to dihaploidization and the rate was 9.4%. 

IOWA CITY, IOWA 
University of Iowa 

Analysis of the chromosome-type breakage-fusion-bridge cycle 
--Zheng, Y and Carlson, W 

The study of dicentrics in maize was initiated by McClintock 
(Mo. Agric. Exp. Stn. Res. Bull. 290:1-48, 1938; Genetics, 
26:234-282, 1941; Cold Spring Harbor Symp. Quant. Biol. 9:72-
81, 1941; 14:13-37, 1951; PNAS 28:458-463, 1942; Carnegie 
Inst. Wash. Ybk. 42:148-150, 1943). She studied both chro
matid-and chromosome-type dicentrics. The chromosome-type 
dicentrics were constructed by introducing two broken chromo
somes, one from the male and one from the female, into the zygote. 
Fusion of the broken ends of the two chromosomes produced the 
dicentric. McClintock's studies showed that chromosome-type di
centrics are unstable during early plant development because they 
undergo the chromosome-type breakage-fusion-bridge cycle. 
Eventually, the dicentrics are converted to monocentrics and the 



cycle ceases. McClintock did not identify the time during develop
ment of dicentric stabilization. 

The type of chromosome that McClintock used to produce di
centrics is referred to as duplication 9 (Dp-9). It contains a 
complete chromosome 9 plus a duplication of nearly all of the short 
arm, attached inversely to the end of the normal short arm. The 
duplicated region of Dp9 was combined with the B-9 chromosome 
of TB-9Sb through crossing over (Carlson, Corn and Corn Im
provement, pp. 259-341, 1988). It should be noted that McClin
tock produced several duplication 9 chromosomes. The one used 
here is referred to as Type-I in Figure 9 of McClintock (Genetics, 
26:234-282, 1941 ). At the first division of meiosis, the B-9-
Dp9 chromosome frequently engages in foldback pairing and in
ternal crossing over, with production of a chromatid-type dicen
tric B-9. This dicentric forms a single bridge at anaphase II. Fol
lowing breakage of the bridge and DNA replication, the broken 
ends fuse and form a chromatid dicentric again. This initiates 
McClintock's chromatid-type breakage-fusion-bridge cycle. The 
cycle continues during the first pollen mitosis. However, at the 
second pollen mitosis, nondisjunction interrupts the cycle. Mitotic 
nondisjunction of the B-9 produces one sperm with the dicentric 
and another without it. In this process, the chromatid-type dicen
tric B-9 is converted into a chromosome-type dicentric. Conse
quently, a B-9-Dp-9 chromosome can produce chromosome type 
dicentrics when transferred through the male parent. This makes 
production of the dicentrics simpler than with McClintock's 
method. 

In order to construct chromosome dicentrics with B-9-Dp9, 
kernels with a dominant C Wx phenotype were selected from 
crosses of 9-B(wx1) 9-B(Wx1) B-9-Dp9{C1 C1) X 9(wx1) 9-
B(Wx1) B-9{c1) B-9{c1). Plants grown from the seeds were 
classified for pollen type. Plants with all Wx pollen and 50% pollen 
sterility were selected. These should be 9-B(Wx1) 9-B(Wx1) B-
9-Dp9. The selected plants were crossed as male parents to a 
tester: 9(bz1 yg2) 9(bz1 yg2) X 9-B(Wx1) 9-8(Wx1) B-9-
Dp9{Bz1 Yg2 Yg2 Bz1). Fertilization of the egg by sperm con
taining a B-9 dicentric and of the polar cells by sperm lacking the 
B-9 gives the desired type. The endosperm has a recessive brown 
(bz) phenotype. The embryo has a B-9 dicentric and should give a 
variegated yellow and green (Yg/yg) phenotype. 

A total of 747 brown seeds were planted in a search for chro
mosome dicentrics. The plant phenotypes were classified as: 194 
green {26.0%), 66 yellow {8.8%), 54 dead or did not germinate 
(7.2%), 433 variegated green and yellow (58.0%). The varie
gated plants were studied in detail. Among 433 variegated 
plants, the primary root tips of 410 were checked for double 
bridges in mitotic anaphase. They were found in 364 plants. The 
percentage of variegated plants with double bridges was 88.8%. 
Next, 148 plants with double bridges were examined at weekly in
tervals for up to 1 O weeks. A single root tip was examined each 
time to check double bridge configurations in 25 anaphase cells 
per plant. The data are summarized in Table 1. The percentage of 
variegated plants with double bridges in the roots declined grad
ually during plant development, indicating that the dicentric chro
mosomes were stabilized over the 1 O week period in most plants. 
Only a few plants {6.5%) showed double bridges at week 10. 
From the curve in Figure 1, it appears that there is no specific 
time for elimination of the dicentric condition. 

The findings do not distinguish between a) gradual elimination 
of dicentrics at different times in different sectors of a plant, or 

Table 1. Percentage of variegated plants with double bridges over time. The number of 
variegated plants checked each week varied since the root tips of some unhealthy plants were 
not available each week and some plants died. , 

Week# 
Number of plant!! 
examined 
Number of plants with 
doubloMdlll:! 
% of plants with 
doubJe bridses 

100.0006 

90.0006 

80.0006 

70.0006 

60.0006 

50.0006 

40.0006 

30.0006 

20.0006 

10.0006 

2 3 

148 132 119 

134 105 74 

90.5 79.5 62.2 

5 B 

126 140 143 146 107 

64 46 41 '}J 10 

50.B 32.9 2B.7 _ 1B.5 9.3 

0.00¼ ..._ ........ _ ..._ __.__...._ _ ________ ____, 

9 

103 

B 

7.B 

W<ek Week Wed< We,k Week Wed< We,k Week Wed< We,k 
1 2 3 4 5 6 7 8 9 10 

10 

77 

6,5 

Figure 1. Percentage of variegated plants with double bridges during plant development. The 
data are listed in Table 1. 

b) elimination of dicentrics at a specific time in development for 
each plant, with the time varying between plants. It should also be 
noted that the method of dicentric 8-9 stabilization has not yet 
been completely documented. McClintock found, with a dicentric 9, 
that conversion to monocentrics occurred. With the B-9 dicentric, 
conversion to monocentrics is found, but lagging and loss of the di
centric in anaphase may also occur. Both events "stabilize" the di
centric by eliminating double bridges. 

Minkhromosomes 
--Zheng, Y 

A crossover between the B-9 chromosome from TB-9Sb and 
the duplication 9 chromosome from McClintock (Genetics, 26:234-
282, 1941) has been used to establish a chromosome breakage
fusion-bridge cycle, as described in an accompanying article. 
Briefly, a B-9-Dp9 chromosome is capable of self-pairing and 
crossing-over to produce a chromatid breakage-fusion-bridge 
cycle. Subsequently, nondisjunction at the second pollen mitosis 
converts the chromatid cycle to a chromosome cycle. Crossing 9-B 
9-B B-9-Dp9 plants as male parents to a bz1 bz1 yg2 yg2 tester 
produces some progeny with the bz endosperm phenotype. Among 
these kernels, many have a B-9 chromosome dicentric in the em
bryo. Since the dicentric undergoes a chromosome-type break
age-fusion-bridge cycle, the phenotype of the correct plants is 
variegation for green and yellow stripes. 

In order to study the fate of 8-9 dicentric chromosomes dur
ing development, tassel samples (sporocytes) were collected from 
41 variegated plants and examined in meiosis. Most of the plants 
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had been checked previously for double bridges in primary root tip 
cells and 34 showed double bridge configurations. Therefore, at 
least 34 of the plants initially contained a 8-9 dicentric. 

When the chromosomes were checked at pachytene, a lot of di
versity was found in chromosome structure between plants and 
even within the same plant. Breakage occurred at various posi
tions between the two centromeres, producing both long and short 
chromosomes, as well as sizes in between. "Mini-chromosomes" 
were identified in 13 of the 41 variegated plants at pachytene. 
The term "mini-chromosomes" is used for a collection of very small 
chromosomes that are heterogeneous in size. They all probably 
arose from bridge breakage at or near the B centromere. 

In metaphase-I cells , the mini-chromosomes orient on the plate 
along with the other chromosomes (Figure 1 ). In anaphase-I, the 
mini-chromosomes usually lag and do not migrate early to one pole, 
unlike complete B chromosomes (Carlson and Roseman, Genetics, 
131 :211, 1992). They often split after lagging in anaphase I. They 
can also be observed in metaphase-11 and anaphase-11 cells. These 
are preliminary observations, without quantitation at this point. 
The main finding is that extremely small chromosomes frequently 
arise among the variegated plants. 

Figure 1. A mini-chromosome In a metaphase-i cell. 

Construction of 9S telocentrics 
--Zheng, Y and Carlson, W 

Carlson and Curtis (Can. J. Genet. Cytol. 28:1034-1040, 
1986) produced unusual constructs, referred to as proximal du
plications, for chromosomes 3 and 9. In the chromosome 9 con
struct, the normal 9 bivalent is replaced with 9-B chromosomes 
from TB-9Sb and TB-9La. The homozygous stock contains 9-
BSb 9-BSb 9-BLa 9-BLa. No B-9's are present. 

Plants homozygous for proximal duplication 9 were crossed as 
female to one of the progenitor lines, TB-9Sb. The purpose of 
the cross was to produce hemizygous 9-BSb 9-BSb 9-BLa 
plants. The 9-BLa chromosome should be frequently unpaired in 
these plants and more susceptible to misdivision in meiosis than 
other chromosomes. Selection of the hemizygous plants depended 
on using a Ct-I marked TB-9Sb. The cross was: 9-BSb 9-BSb 9-
BLa( Ct) 9-BLa(Ct) X 9-BSb 9-BSb B-9(Ct-/) B-9(Ct-/). 
Among the progeny, white seeds with colored scutellum were se
lected. The plants should contain 9-BSb 9-BSb 9-BLa. This con
stitution was confirmed by 1) classifying pollen and finding 50% 
pollen sterility, and 2) doing testcrosses to Ct Ct plants and 
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finding no color inhibition. 
The selected plants were crossed as male to a ct ct tester and 

two different bzt bzt testers. From these crosses, a number of 
variegated seeds were obtained. Previous evidence suggested 
that variegation is a marker for misdivision (Carlson, Annu. Rev. 
Genet. 12:5-23, 1978). Among 26 variegated seeds checked from 
crosses of bzt bzt x 9-BSb 9-BSb 9-BLa(Bzt) and ct ct x 9-
BSb 9-BSb 9-BLa( C 1), four contained a telocentric 98. As a 
control, twenty eight non-variegated seeds were also checked. No 
98 telocentrics were found. The results suggested that the use 
of variegation as a selective phenotype for telocentrics is effec
tive. 

The telocentrics found above were not maintained. However, 
another group of variegated seeds was planted in the field. The 
second group was propagated in crosses as female to ct ct or bzt 
bzt testers. Progeny with dominant C or Bz phenotypes were se
lected and classified in root tips for chromosome type. Twelve 
telocentrics of 98 and five isochromosomes of 98 were recovered. 
The rate of telocentrics found in these variegated seeds was 
12/164 = 7.32%. In the prior screen of seedlings the rate was 
4/26 = 15.38%. 

The method for isolating telocentrics presented here is effec
tive for several reasons, but the main advantage is the ability to 
form the telocentric in pollen parent crosses. This allows for the 
selection of variegated kernels, which are probably less common in 
egg parent crosses. It also means that a single plant, with an ap
propriate constitution for misdivision, can be used in many crosses. 
Future work includes making the telocentric stocks homozygous 
(9-BSb 9-BSb telo-98 telo-9S). In addition, more proximal du
plication stocks are being constructed. The limiting feature of 
this technique is the availability of appropriate endosperm mark
ers on different chromosome arms for classification of variega
tion. 

High frequency centrorneric misdivision 
--Carlson, W 

Studies with the 8-9 chromosome of the translocation, TB-
9Sb, led to the isolation of an apparent isochromosome (Carlson, 
Chromosoma 30:356, 1970). Subsequently, it was found that the 
chromosome was, in fact, a pseudoisochromosome (Carlson, Genet
ics 97:379, 1981 ). The two arms differ in terms of the presence 
or absence of centric heterochromatin, as depicted below. (B 
chromosome regions are solid black). 

• • • •-· Pseudoisochromosome 

The pseudoisochromosome is stable during plant development 
but is unstable when transmitted through the pollen parent. It 
frequently produces variegated kernels in testcrosses using bzt 
or ct as a marker. When kernels with variegated endosperm phe
notypes were germinated, telocentrics were frequently found in 
the plants. Therefore, variegation is associated with misdivision 
of the chromosome (Annu. Rev. Gen. 12:5, 1978). The reason for 
variegation may be the absence of a telomere at the terminal cen
tromere, due to a lack of "healing" in the endosperm. Two types of 
telocentrics were recovered, corresponding to the two arms of 
the pseudoisochromosome. 



492rm:rmr • 
Type 1 telo 

, 

• • Type 2 telo 

The type 1 and type 2 telocentrics are stable both in plant de
velopment and in pollen parent crosses. They seldom produce var
iegated kernels in testcrosses and misdivide in_frequently. Never
theless, it was possible to produce the type 1 1sochromosome by 
misdivision of the type 1 telocentric (Genetics 97:379, 1981 ). The 
type 1 isochromosome is stable during development, but produ?es 
large numbers of variegated kernels in pollen parent crosses, Just 
as with the pseudoisochromosome. 

Recently, an explanation was found for the diffe~en?e between 
the two isochromosomes and the type 1 telocentric, 1n terms of 
stability. This past summer, a number of crosses were made in 
which the type 1 telocentric was univalent in meiosis. The crosses 
were of the type: bz1 bz1 X 9-B 9-B type 1 telo (Bz1). In the 
progeny, variegation for pu_rple and bron~e p~e_notypes (Bz bz) 
was frequent, suggesting high levels of m1sd1v1s1on. The rate of 
Bz bz kernels for three ears was 48 variegated kernels per 597 
total, or 8.0%. The variegated classification was restricted to 
kernels in which at least 1/6 of the endosperm phenotype was re
cessive. In addition, a number of recessive bz kernels were found in 
these crosses. With a normal (standard) B-9 the presence of bz 
kernels is expected, since nondisjunction at the second pollen mito
sis frequently "uncovers" the recessive. However, the type 1 tel~
centric is incapable of nondisjunction, due to the absence of centric 
heterochromatin. Therefore, the bz kernels must have another 
source. A cytological study was made of the bz kern~ls found on 
the same three ears mentioned above. The plants derived from bz 
kernels were classified as follows: 

20 chromosomes= 12 
21 chromosomes with an isochromosome = 13 
21 chromosomes with a telocentric = 1 
22 chromosomes with two telocentrics = O 

No cases of true nondisjunction, with 22 chromosomes, were found. 
Instead, many of the kernel types appear to be cases of ~isdivi
sion. One explanation is that misdivision in_ m~iosis t~ansm1tted _a 
damaged telocentric to the second pollen m1tos1s. This telocentric 
replicated or divided improperly to form an isochromosome. _The 
13 bz kernels with an isochromosome in the plant can be explained 
by migration of the isochromosome to one pole, giving 0-iso dis
junction. The 12 bz kernels with only 20 chromosomes could have 
resulted from lagging of the isochromosome at anaphase and 0-0 
disjunction. (Note: the 20 chromosome class is not a case of se~f
contamination since a marker in the pollen parent was present in 
the seeds). The single case of a plant with one telocentric is less 
easy to explain. However, it is not the result of simple nondisjunc
tion. 

The findings are preliminary, but they appear to invalidate 
prior speculations on the cause of isochromosome instability. They 
show that the type 1 telocentric can be just as unstable as the 
original (pseudo-) isochromosome or the type 1 isochromosome. 
The required condition is a lack of pairing with another chr_o~o
some in meiosis. In retrospect, it appears that the original 
isochromosome and all its derivatives suffer from the same defect: 
they are unstable when univalent in meiosis. The is??hromosom~s 
are unstable in all their crosses, even when a pamng partner 1s 

present, because they tend to self pair. The telocentric is unsta
ble only in those crosses in which a pairing partner has been ex
cluded. The finding of a specific defect in centromere behavior 
for one set of chromosomes may help explain the functioning of one 
part of the maize centromere. In addition, the fact that the type 1 
telocentric is now known to be unstable when univalent provides a 
simple system for studying the process of misdivision. It is much 
simpler to follow, cytologically, misdivision of a chromosome with 
two chromatid arms (telocentric) than one with four arms 
(isochromosome ). 

IRKUTSK,RUSSIA 
Institute of Plant Physiology and Biochemistry 

Protein synthesis in mitochondria under different redox conditions 
--Konstantinov, YM; Subota, IV and Arziev, AS 

It is known that gene expression can be efficiently regulated at 
the level of translation along with transcriptional and posttran
scriptional levels. However specific molecular mechanisms of such 
regulation, especially regarding translation in mitochondria, are 
poorly known. 

As previously shown, redox conditions can provide a profound 
effect on the template activity of the mitochondrial genome re
garding RNA and DNA syntheses in organello (Konstantino~ et ~I., 
Biochem. Mol. Biol: 36:319-326, 1995). Moreover, the act1vat1on 
of transcription in mitochondria unoer oxidising conditions and its 
inhibition under reducing conditions can indicate possible redox 
regulation of genetic processes in mitoch~ndria. With consid~ra
tion for the existence of multi-level regulation of gene expression, 
a question arises at what levels such regulation can exist during 
functioning of mitochondrial genes. 

The aim of the present work was to examine the mitochondrial 
protein synthesis in organello under changes of redox conditions by 
the addition of potassium ferricyanide as an oxidising agent and 
sodium dithionite as a reducing agent. 

The mitochondria were isolated from 3-day-old etiolated 
seedlings of hybrid VIR 46MV by a standard method of differen
tial centrifugation. Protein was determined by the Lowry method, 
protein synthesis was measured i_n mitochondria according to t~e 
method of Bhat et al. (Biochemistry 21 :2452-2460, 1982) with 
the use of [14C]-leucine (specific radioactivity was 1760 
GBq/mol). Protein synthesis reactions in seedling mitochondria 
were highly sensitive to chloramphenicol (50 ug/ml). In or~er to 
study the effect of oxidation phosphorylation uncoupler on 1n or
ganello protein synthesis carbonyl cyanide chlorophenylhydrazone 
(CCCP) at a final concentration of 1 µM was used. 

The effect of redox conditions on the kinetics of protein syn
thesis in maize seedling mitochondria is shown in Table 1. 

Table 1. Kinetics of protein synthesis in isolated maize mitochondria in the absence and the 
presence of potassium ferricyanide or sodium dllhlonlte. 

Incorporation of [14C]•leucine, counts/min/mg protein 

Conditions 5min 

Control 554 
Ferricyanide (5 mM) 1098 
Dllhlonlta (5mM) 180 

10mln 

1432 
2221 
132 

15min 

2833 
3931 
310 

20min 

4986 
6039 
1190 

The activity of protein synthesis is seen to increase in the 
presence of potassium ferricyanide used as an oxidising agent, 
while this process is strongly inhibited when mitochondria were 
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supplemented by sodium dithionite as a reducing agent. Thus, re
dox conditions used affected pronouncedly the activity of the pro
tein synthesizing system in isolated plant mitochondria. 

In addition, the effect of redox conditions on protein synthesis 
has been examined in the presence of carbonyl cyanide 
chlorophenylhydrazone (CCCP), an uncoupler of oxidative phos
phorylation. It is seen in Table 2 that the effect of potassium 
ferricyanide on the protein synthesis is negligible in the presence 
of CCCP, while the treatment with simultaneous addition of 
sodium dithionite and CCCP resulted in more profound inhibition 
of translation. Since the addition of CCCP alone caused a signifi
cant decrease in the activity of mitochondrial protein synthesis, 
apparently due to development of an energy deficient state in mi
tochondria, the changes in the redox conditions' influence in the 
presence of the uncoupler is related, in our opinion, mainly to dis
turbances in energy supply of this process. 

Table 2. The effect of potassium ferricyanide and sodium dithionite on protein synthesis in 
maize mitochondria in the presence of CCCP. 

Condi lions 

Control 
CCCP 
Ferricyanide 
Ferricyanide + CCCP 
Dithionite 
Dithionite + CCCP 

Incorporation of [14C]-leucine, 
counts/min/mg protein 

7380 
4005 
11863 
8044 
2804 
1411 

The effect of potassium ferricyanide on the translation activ
ity has been examined in the presence of such an inhibitor of tem
plate RNA synthesis as ethidium bromide in order to elucidate 
whether changes at the transcriptional level are the main reason 
for changes in mitochondrial protein synthesis in the presence of 
redox agents (Table 3). It is expected from data given in Table 3 
that redox conditions can affect the expression of mitochondrial 
proteins directly at the level of translation. 

Table 3. The effect of potassium ferricyanide on protein synthesis in maize mitochondria in the 
presence of ethidium bromide. 

Conditions 

Control 
Ferricyanide 
Ethidium bromide 
Ferricyanide + ethidium bromide 

Activity of protein synthesis in mitochondria 
(% of control) 

100 
167 
28 
54 

As a whole, we assume that translation along with other genetic 
processes in maize mitochondria can be subjected to redox control. 

JOHNSTON, IOWA 
Pioneer Hi-Bred 

Mapping mst-L/89 
--Albertsen, MC; Fox, TW and Trimnell, MR 

I was fortunate to have met and visited in 1987 with the well 
known maize geneticist and plant breeder, Prof. C. H. Li (now 
deceased), from the Peoples Republic of China. He was another of 
those individuals who had an incredible wealth of knowledge about 
maize. Our conversation eventually came around to the subject of 
maize male sterility. I mentioned to him that I was interested in 
receiving as many male-sterile mutations as I could so as to better 
understand the process of pollen development in maize. A year or 
so later he sent me a few seeds of a new male-sterile mutant he 
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had found. He attached the following note, originally written in his 
handwriting. 

"This new male sterile gene was first found in 1978 and 
proved to be nonallelic to ms2, ms 10, and ms 1. By using a 
T4-9(5657) stock which has breakpoints at 4L.33 and 
9S.35 and the su1 in the linkage test, I obtained 5-6% 
crossover between su--T and 8-13% between T--ms(L) 
from different sets of the tested material. From the su
seeds I provided herewith, you will get mostly male steriles 
as non-crossovers, and from Su-kernel(s) mostly het
erozygote translocations, t/T, which are to be readily 
identified from pollen examination. The identification of ms 
t/T genotype (any crossovers) can be made by the seed 
set only (semi-steriles) ... " 

I do not know the origin of the material, other than that it was 
from a 1987 source. Of the Su kernels that we planted, we ob
tained eight male fertiles and four male steriles. From the su ker
nels, we obtained one male fertile and 1 O male steriles. The mutant 
segregated as a single recessive allele on chromosome 4. We knew 
that there were no recessive male sterile mutants currently de
scribed on chromosome 4 and that this was likely a new genetic 
male sterile. To verify and to further develop bulk segregant 
analysis, we crossed this mutant (our designation ms*-L/89) with 
A632 and selfed the progeny. Equal amounts of DNA from 20 
male-fertile plants and DNA from 20 male-sterile plants from the 
self were pooled according to fertility classification. Each pool 
was digested with BamHI, EcoRV, and Hindlll, run on a gel, and 
southern blotted. Initially, two RFLP markers on each arm of 
chromosome 4 were used to screen the southern blots. Both 
probes from 4L, bn/7.65 and php20608, gave polymorphisms with 
at least one enzyme. Two additional probes from 4L, umc15 and 
umc19, also gave polymorphisms. To confirm and narrow down the 
map location, blots were made using DNA from the individuals that 
comprised each bulk. The data indicated that the allele responsi
ble for male sterility is between RFLP markers umc158 and umc15 
on chromosome 4L. 

Based on Prof Li's genetic tests and our molecular work, we 
normally would propose a new ms-designation for this mutant. 
There are, however, two dominant male-sterile mutations on chro
mosome 4, Ms41 and Ms44. They originally were distinguished 
from each other by virtue of the ability of Ms41 to shed a small 
amount of pollen in certain environments, and this pollen being used 
to conduct an allelism test with Ms44 (Albertsen and Neuffer, 
MNL 64:52, 1990). The suggested location of ms*-L/89 by our 
molecular analysis placed it provocatively close to Ms44. Although 
there is no instance to date of a dominant male-sterile mutant and 
a recessive male-sterile mutant being allelic, we did not want to 
make a definite call until we conducted further linkage tests. 
Suggestions as to how to proceed are welcomed. 

Ms-gene designations 
--Albertsen, MC 

I would like to volunteer to help coordinate the designation of 
new male-sterile mutations. There are several gaps in designating 
the existing known male-sterile mutations as shown by the follow
ing current listing: ms1, ms2, ms3, ms4 (original stock lost), ms5, 
ms6 (original stock lost), ms7, msB, ms9, ms10, ms 11, ms12, ms13, 
ms14, ms15 (original stock lost), ms16 (original stock lost), ms17, 
ms18 (original stock lost), ms19 (original stock lost), ms20, Ms21 
(original stock lost), ms22, ms23, ms24, ms25, ms26, ms27 



(proposed use by P. Bedinger), ms28, ms29 through ms40 (not 
used), Ms41, Ms42, ms43, Ms44, and ms45-m1::Ac. I propose to 
"fill-in" the gaps so as to reduce the confusion concerning the 
number of male-sterile mutations officially described in maize, and 
to reduce the possibility of the same mutant designation referring 
to more than one mutant. Unfortunately, this already has hap
pened for ms4, which originally was used by Beadle in 1931 and 
subsequently re-used as a designation for a mutagen-induced 
male-sterile mutation that bears no relationship to Beadle's origi
nal ms4. Additionally, ms6 often is referred to as being allelic to 
polymitotic (po). Beadle's 1932 description of ms6 bears no re
semblance to po, and as such, strongly suggests that the original 
stock of ms6 has been lost. 

I also would like to suggest that in the future, before anyone 
uses a new numbered designation for a particular male-sterile mu
tation, they at least identify the chromosome arm on which the al
lele is located. This will greatly facilitate the daunting task of 
making all the necessary allelism crosses that must subsequently 
be made by other researchers who also may have unmapped male 
steriles waiting to be officially designated. If the appropriate 
chromosome arm is known, the number of required crosses is re
duced considerably. Unfortunately, for example, we will be unable 
to give new designations to any of the male steriles that Dr. Earl 
Patterson described last year until new allelism crosses are made. 
This suggestion, of course, would not preclude anyone from using 
their own ms*-xxxx designations for new male steriles that they 
are in the process of describing. 

Description of a corn genome project at Pioneer Hi-Bred 
--Helentjaris, T and Fincher, R 

With continued improvements in molecular genetic technologies, 
it has now become feasible to undertake projects with the aim of 
isolating and identifying most, if not all, of the expressed genes 
within an organism, as is currently underway in the Human Genome 
Project. In one strategy, often referred to as the "EST ap
proach" and pioneered by Craig Venter and associates (Adams et 
al., Nature Supp. 377:3-174, 1995), large numbers of cDNA 
clones are prepared, sequenced (usually by a single-pass from the 
presumed 5' end of the mRNA), and then categorized based upon 
their identification by sequence similarity to known gene sequences 
from within GenBank and other databases. With the high rate of 
evolutionary conservation at the amino acid level, it has proven 
practical to identify up to 35% of these clones by sequence simi
larity to another gene with a previously studied function, often 
crossing species and even phyla boundaries to detect these func
tional relationships. In fact one of the greatest impacts of these 
types of projects may be the ability to "access" the results of bio
logical studies in any other species by finding a "homolog" in your 
own species of choice through sequence similarity detected at the 
amino acid level with other better studied entries in the public 
databases. Given the abilities to produce large and representa
tive cDNA libraries, to efficiently sequence hundreds of thousands 
of such clones, and to identify many clones by similarity analyses, 
such projects are capable of isolating and identifying tens of thou
sands of cloned genes with putative functions. Initial studies in 
corn on a relatively small scale (Keith et al., Plant Physiol. 
101:329-332, 1993; Shen et al., Plant Mol. Biol. 26:1085-1101, 
1994) have already amply demonstrated the utility of this ap
proach by providing plant researchers with maize homologs for 

many important genes. 
Consequently, given the power of this general approach to 

significantly increase our general knowledge of genes and their 
functions, Pioneer Hi-Bred has decided to undertake a large-scale 
corn EST program in conjunction with Human Genome Sciences 
(HGS). Pioneer researchers will endeavor to produce gene-en
riched libraries which will be submitted to HGS for single-pass 
sequencing from the presumed 5' terminus of the original mRNA. 
We plan to explore the use of standard, high complexity cDNA li
braries prepared from a variety of tissues and treatments, nor
malized libraries, subtracted libraries, and other innovative ap
proaches, all in an effort to identify as many genes as possible. By 
comparison with other sequences already in the public databases, 
we then hope to identify many of these genes to some putative 
functions. In line with this general goal, we are also exploring ad
ditional research strategies to establish both the genetic map lo
cations and expression patterns of these clones, as well as to de
ploy our technology for mutational analyses of many of these genes 
(Meeley and Briggs, MNL 69:67&82, 1995}. 

Pioneer is currently developing plans which will provide oppor
tunities for collaborative research in this area with researchers in 
the public sector. The EST information will provide for many new 
investigations in a variety of areas of plant biology. Once the de
tails are finalized on the organization of these potential collabora
tions, they will be communicated to the maize research community. 
Pioneer welcomes this continued opportunity to work with the 
maize research community with the goals of both meeting Pioneer's 
product development objectives and advancing the state of knowl
edge of maize genetics. 

KIRKSVILLE, MISSOURI 
Northeast Missouri State University 

Microsatellite repeat variation within the yf gene of maize and 
teosinte 

-Phelps, TL and Buckner, B 

In a previous study we demonstrated that allele-specific 
length polymorphisms exist in a (CCA)n microsatellite that is pre
sent 11-bp upstream of the transcriptional initiation site within 
the maize y1 allele cloned from the hybrid line 060 (Phelps and 
Buckner, MNL 69:84-85, 1995). We have extended this study to 
include additional maize alleles and one or two accessions of six 
teosinte species, subspecies or varieties. Sequence analyses 
demonstrate that the (CCA)n microsatellite varies in repeat num
ber from 3 to 11 (Figure 1 and Table 1 ). In addition, the (CCA)n 
repeat is flanked by the imperfect pentanucleotide repeat 
(PyCATC; Py = C or T}. Three different organizations of the 
pentanucleotide repeat were observed (designated types 1, 2 and 
3 in Table 1). Type 1 contains both the (CCATC} and (TCATC) 
sequence duplicated as well as a trinucleotide CTG repeated 33 
bp 5' of the (CCA)n repeat. Types 2 and 3 contain three copies 
of the pentanucleotide repeat but differ by a single base in the 
first repeat. We have further subdivided these categories based 
on the number of (CCA)n repeats found. The only sequence vari
ability found within the (CCA)n repeat was a C to T transition in 
the second and fifth (CCA)n repeats of type 3a and 3c, respec
tively. In total, 12 different sequence polymorphisms were ob
served in this study (Figure 1 and Table 1 ). Therefore, the 
(CCA)n microsatellite, as well as the sequence directly adjacent to 
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Table 1. Sequence organization of the microsatellite-containing region of they/ gene of maize and teosinte. 

Type Organization of pentanucleotide repeat flanking 
(CCA). microsatellite repeat in Yi 

(CCA). Genetic Material and Sequence Identity' 

2a 

2b 

2c 

3a 

3b 

Jc 

3d 

3e 

CCATC TCATC TCATC (CCA) ....... CCATC 

CCATC TCATC 

CCATC TCATC 

CCATC TCATC 

(CCA) ... .... CCATC 

(CCA) ....... CCATC 

(CCA) •...... CCATC 

TCATC TCATC (CCA) ....... CTATC 

TCATC TCATC (CCA) ....... CTATC 

TCATC TCATC (CCA) .... ... CTATC 

TCATC TCATC (CCA) ... .... CTATC 

TCATC TCATC (CCA) . .. , ... CTATC 

II 

10 

8 

6 

II 

7 

6 

3 

5 

Q60=H99 

Ml4 = yl-8549 = yl-wmut 

B73 = standardyl 

Z. mexicana (PI 3 84060) • (PI 56668 I) 

Z. huehuetenangensis (PI 441934) • (Ames 21880) 

Z. parviglumis (PI 331786) 

yl-lemon yellow"' Black Mexican Sweet= 
Strawberry popcorn = Knobless Wilber's Flint • 
Z.perennis (Ames 21875) 

Z. diploperennis (PI 462368) = (Ames 2317) = 
Z. perennis (Ames 21881) 

Z. IIIXllrians (Ames 21876) = (Ames 311282) 

• =, The sequences presented in Figure 1 are identical; "• sequences are not identical. 

i~~ ~11~1~I~~1~1I~~T~~IT~~T~~T1TT~T1~T~~~T1~T~T~~~~~T~ 
My1 -4 B549 *********************---************************** 

1 ···················••---••···············••******* ii3wmut !!!!!!!!!!!!!!!!!!!!!:::!!!!!::!!!!!!!!!!!!!!!!!!! 
yl-stand *********************---•••••••••••••••••••••••••• 
yl-1em •• • • •••*•* ***********--- •••••• •••••••••• •••••- ----
BMS • • • • •• •• •******* **** *--- *** *** * ** *** * ** *;* ***-----
Straw *********************---*********************-----
KWF •••••••••••••••******---*********************-----
Z.h(441934)~********************---*********************----
Z.h(218B0) **********•••••••****---••••••*****G** *** * ***-- --
Z.par •••••••••••••••••••••---•••••••••••**********----
z.~l3840f0)*********************---***************•********** 
z.m 5166 l)*********T••······••c- - - •· ···••T***C********G***** 
Z., 2 87) •••••****************---•******T***C***••••••-----

z. 2 88} ····················•---••·················•• -----
z. ····················•---••··················· -----z. ····················•---••·················•· -----

060 
R99 
~!!9549 
Kl-wmut 

TCATCTCATCCCACCACCACCACCACCACCACCACCACCACCATCTTTAG ··································••************•* 
·····-----•··························---••*••····· ····•-----******••·······••*••···••**---•••*••···· 
·····-----···························---••········ *****-----·•·············••**•*---------·•*······· 
·····-----·····················---------•········· yi~otand 

Yl- iem ••••••••••••••••••••••T••---------------••••••c••• 
BMS *******•**************T**---------------******C*** Stlaw • *** • * •• * **** ••·•• ••••*T* •---------------•• ****C* • • KW * ****•••**************T**---------------******C••• 
Z. (441934) • •****•••••••T•*********••••••••••••**********•*** 
Z. (21880) * ************T************************************ 
Z.pa~ •••••••••••***********••••••------------•••••••••• 
Z . m !3 84060j * ****-----***************---------------•••••••••• 
Z.m j66681 ••***-----***************---------------•********• l.p 1875! • •••••••••••••••••••••T••---------------••••••c••• 

.Q 1881 ················------------------------·········· .a ••••••••••••••••------------------------•••••••••• 
Z.1 **********************------------------********** 

Of0 GATAAGATAGCAAATATATGGCCATCATACTCGTACGAGCAGCGTCGCCG 
R 9 *****•**************•*•*******•••••••••••*****•••• 
M !9549 :::::::::::::::::::::::::::::::::::::::::::::::::: 
X1-wrnut ••••••••••••••••••••••••••••••••••••••••••*••••••• 
8 7 3 ······················••****••··············•*•*** 
~

l - ~tand •••••••••••••••••••••••••***•••••••••••••••••••••• 
1-1 e m •••••••••••••••••••••••••••••••••••••••••••••••••• 
HS ••••••••••••*•••••••••••••••••••••••••••••****•••• St!aw •••••••*************••*••••••••••••••••••••••••••• 

KW •••• •••• • •••• • •••••••• • •• • ••• ••••••••••••••••••••• 
Z. C 4 41934) •• • * • • *** ••*•*** .... **** * * 'Ir* ****• • • * **• • • • •,..,..,..*• • ••,.,.., z. (21880) •••••••••••••••••••••••••••••••••••••••••••••••••• 
z pa~ •••••••••••••••••••••••••••••••••••••••••••••••••• z:~1384060)*****••••••••••••••••••••••••• • • •••••••••••••• • ••• z.m !66681)**•••••••••••••••••••••••••••••••G•••••••••••••••• Z.p 1875l .................................................. . 
Z.Q 1881 ******•••••••••••••••••••*•••••••••••••••••******* z.a ••••••••••••••••••••••••••••••••• .. •••••••••••••••• 
Z.l ** •*G*** ~ • ••• ••• •• * * * **** * *** * * * ** * • • ************* 
Figure 1. Sequence of the microsatellite--containing region of the y1 gene of maize and teosinte. Abbreviations are as follows: 060, an allele present in the maize stock designated 060, which is a 
hybrid of inbred lines 066 and 067; H99, M14 and 873, alleles pre sent in inbred lines H99, M14 and 873 respectively; y/-8549 and y1-wmut, alleles described by Robertson and Anderson (J. He red 
52:53-<lO, 1961 ); y1-stand, standard recessive allele of y/, y1-lam, y1-lemon yellow provided by GF Sprague; BMS, Black Mexican Sweet; Straw, Strawberry popcorn; KWF, Knobless Wilbu(s Flint; 
Z.h (441934), Z. mays var. huehuetenangensis (Pl 441934); Z.h (21880), Z. mays var. huahuatenangensis (Ames 21880); Z. par, Z. maysssp. parviglumis; Z.m (384060}, Z. mays ssp. mexicana 
(Pl 384060); Z.m {566681), Z. maysssp. mexicana (Pl 566681); Z.p (21875), Z. perannis (Ames 21875); Z.p (21881), Z. perennis (Ames 21881); Z.d, Z. dlptoperennls; Z.I, Z. /uxurians. An 
asterisk indicates the same base as that found in the 060 allele. A hyphen indicates the base found in the 060 allele was not present. 
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it, exhibit a high degree of variability. 
Each of the annual teosinte types analyzed in this study can be 

distinguished based on the sequence of the microsatellite-contain
ing region of y1 (Figure 1 and Table 1 ). In addition, sequence 
polymorphisms that flank the microsatellite region of y1 allow the 
two accessions of Z mays ssp. mexicana and Z mays var. huehuete
nangensis to be distinguished (Figure 1 and Table 1 ). The peren
nial teosintes Z diploperennis and Z. perennis (Ames 21881) were 
found to exhibit the type 3d organization of the pentanucleotide 
repeat with 3 (CCA) repeats, which was the least number of re
peats observed. However, another accession of Z. perennis (i.e., 
Ames 21875) exhibited type 3c organization of the pentanu
cleotide repeat containing 6 (CCA) repeats. Therefore, the 
(CCA)n repeat number is variable within this Zea species. Inter
estingly, the sequence flanking this region in Z. perennis Ames 
21875 could be distinguished from that of the Z. may ssp. mays 
type 3c sequences by polymorphisms that flank the microsatellite 
(Figure 1 and Table 1 ). Further analysis of teosinte will be neces
sary to determine if the degree of variability in this region of the 
y1 gene is sufficient to make it a good marker for studying genetic 
variability within and among populations of teosinte. 

KISHINEV, MOLDOVA 
Institute of Genetics 

Existence of pollen grains with a pair of morphologically different 
spenn nuclei as a possible cause of the haploid• Inducing capacity 
inZMSline 

--Bylich, VG and Chalyk, ST 

Maternal haploids in maize can be obtained when haploid-in
ducer lines are used as pollen parent. It is quite logical to assume 
that pollen contains a factor or factors determining the haploid
inducing capacity. 

Enaleeva et al. (XI Intern Symp, Leningrad: 29-30, 1990) 
studied the events which occur in embryo sacs after pollination 
with pollen of the haploid-inducer line PEMS-2. This line induces 
nearly 8% of maternal haploids when it is used as a male parent. 
The development of either the embryo or central cell was estab
lished in some embryo sacs. Some embryo sacs have been discov
ered where development of the embryo lags behind that of the en
dosperm. These events are explained by failure in double fertil
ization. Single fertilization of an egg or of a central cell occurs. 
The authors supposed that the developing triploid endosperm can 
stimulate the unfertilized egg to divide and to develop into a hap
loid embryo. 

In our work the pollen of the ZMS haploid-inducer line has been 
studied. This line induces up to 3 and more percent of maternal 
haploids. Pollen from MK01 line has been used as the control. 
Study of the pollen grains has been carried out using an automatic 
system which includes a light scanning microscope and a computer 
complex. Fresh mature pollen has been fixed in a mixture of ethanol 
and acetic acid. Staining has been done after hydrolysis in HCI. A 
sample containing 3165 pollen grains was analyzed. 

It has been established that the pollen grains of the ZMS line 
can be divided into five types. This division has been carried out 
according to morphological traits of sperm nuclei. The types are 
as follows. 

1. The pollen grains with two normal well developed sperm nu-

clei (NN) belong to the first type. The percentage of such pollen 
grains is 93.50%. 

2. The pollen grains with sperm nuclei, still incompletely struc
tured (GG), are included in the second type. Such sperm nuclei 
differ from the normal ones in their larger size and round shape. 
Perhaps, they have not undergone complete development and are 
not ready for fertilization. The percentage of such pollen grains is 
0.09%. 

3. The third type of pollen grains is characterized by the 
presence of two sperm nuclei smaller than normal, with configura
tion nonspecific for maize and increased chromatin density (gg). 
The presence of such sperm nuclei might result from pollen grain 
senescence or effects of unfavourable enviroments. Their per
centage is 0.09%. 

4. The fourth type of pollen grains differs from the above 
mentioned ones in the presence of two morphologically different 
sperm nuclei (NG). One sperm nucleus is quite normal for its mor
phological traits. The other one differs in its larger size and an 
uncertain round shape that corresponds to the sperm nuclei of the 
second type of pollen grains. 176 pollen grains belonging to the 
fourth type have been found, for a percentage of 5.56%. 

5. The fifth type embraces the pollen grains which, like ones of 
the fourth type, have two sperm nuclei differing from each other. 
One sperm nucleus is quite normal and the other one is significantly 
smaller in its size and possesses increased chromatin density (Ng). 
The second sperm nucleus corresponds to those observed in pollen 
grains belonging to the third type. 24 pollen grains have been dis
covered and studied belonging to the fifth type, for a percentage 
of 0.76%. 

The fourth and fifth types of pollen grains are of certain in
terest. We have not observed pollen grains with two different 
sperm nuclei in the MK01 control line. It may be assumed that the 
presence of a single normal sperm and a single sperm incapable of 
fertilization causes induction of maternal haploids. It is still diffi
cult to judge if the pollen grains belonging to both types, NG and 
Ng, can serve as the haploid-inducing factor or the pollen grains of 
only one type possess the ability to induce haploids. In any case the 
total percentage of the pollen grains included in the fourth and 
fifth types is 6.32% of the pollen from the ZMS line. It exceeded 
approximately two-fold the maximal percentage of the maternal 
haploids which the ZMS is capable of inducing. Bearing in mind 
that Enaleeva et al. (1990} have observed single development ei
ther of the embryo or of the endosperm it may be assumed that a 
normal sperm nucleus of the fourth and fifth types (NG and Ng) 
can fertilize an egg, or a central cell. This can explain why the fre
quency of the maternal haploids induced is approximately two-fold 
less than that of the pollen grains with a single normal sperm nu
cleus. 

We assume that the presence of two morphologically different 
sperm nuclei may result from their different speed of develop
ment. The presence in a pollen grain of one normally developed 
sperm nucleus and a second sperm nucleus which is either insuffi
ciently well developed or has lost its ability for fertilization be
cause of senescence may be the main cause for induction of mater
nal haploids in ZMS line. 
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MADISON, WISCONSIN 
University of Wisconsin 

Heterochrony and inbreeding 
--Abedon, BG and Tracy, WF 

We have observed alteration in the timing of the juvenile and/or 
adult-vegetative phases as a result of recurrent selection for 
agronomic traits in a number of maize populations (Abedon and 
Tracy, p. 70 in Abstr. 37th Annu. Maize Genet. Cont., 1995). 
Correlated responses to selection may be caused by a number of 
factors including pleiotropy, inbreeding, linkage, and genetic drift. 
Our objective was to determine the effects of inbreeding on 
several morphological traits that are used as markers of the 
timing of juvenile and adult-vegetative phases in order to better 
interpret results from our recurrent selection studies. 

Populations with different levels of inbreeding were gener
ated by selfing 20 plants from the sugary1 population Minn11 P c3, 
which had previously undergone three cycles of recurrent selection 
for pseudostarchiness. For this experiment, seed from individual 
plants was mixed in a balanced bulk for each generation of 
inbreeding to form populations S1, S2, S3, S4, and S5. These 
five populations plus the original population (SO) were grown in 
1995 in randomized complete blocks over two planting dates (15 
May and 13 June) with four replications per planting date. Three
row plots were overplanted and thinned to 15 plants per row. 
Data were collected on ten plants from the middle row of each 
plot. The following developmental traits were evaluated: first 
leaf with adult wax, last leaf with juvenile wax, last node with 
adventitious roots, tiller number, first leaf with pubescence, and 
ear leaf and total leaf number. First leaf with adult wax was 
evaluated only in the early planting date. Several traits were also 
examined that are known to exhibit inbreeding depression, 
including: leaf length, leaf width, days to 50% anthesis and silking, 
ear height, and plant height. Data were analyzed by analysis of 
variance and LSD (p<0.05) was used for means comparisons. 

Inbreeding depression was evident for all traits known to re
spond to inbreeding. Leaf length, leaf width, ear height, and plant 
height decreased significantly, and flowering time was signifi
cantly later, between the SO and S5 populations (Table 1 ). Of the 
traits associated with phase change, only tiller number and total 
leaf number decreased significantly between the SO and S5 popu
lations (Table 2). Ear leaf number and most developmental traits 
associated with the timing of vegetative phases (first leaf with 
adult wax, last leaf with juvenile wax, first leaf with pubescence, 
and last node with adventitious roots) were unaffected by in
breeding with no significant differences between most popula
tions, particularly SO and S5 (Table 2). 

Table 1. Agronomic trait means at six levels of inbreeding (S0-S5), pooled over blocks and 
planting dates. 

A2ronomlc trafl 
Inbreeding genera - Leaf Leaf Ear Plant Days to Days to 
tion length width height height 50% 50% 

(cm) (cm) (cm) (cm) anthe~is silkl(lg 
so 84.6 9.5 91.5 187.7 72.1 74.0 
S1 76.6 7.8 76.4 164.3 72.5 74.6 
S2 75.9 7.7 77.8 163.8 74.0 76.4 
S3 73.8 7.4 79.8 157.7 75.0 77.4 
S4 71.9 7.4 76.6 154.1 75.6 77.8 
S5 71.9 7.6 72,2 154.5 76.3 78.5 
LSD(p<0.05) 2.4 1.2 7.4 9.6 0.6 0,7 
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Table 2. Developmental trait means at six levels of inbreeding (S0-S5), pooled over blocks and 
planting dates. 

Develaementaf trail 
tnbreedng First Last First Tiller# Last Leaves Total 
generation adult juvenpe leaf node below leaf# 

wax wax with with ear 
hairs adv. 

roots 
so 6.9 10.0 5.8 1.8 6.8 12.1 18.0 
S1 7.1 9,7 5.7 1.5 7.0 11.5 17.1 
S2 7.0 10.0 5.9 1.5 6.9 11.8 17.1 
S3 7.4 9.9 6.0 1.6 7.2 11.8 17.0 
S4 6.9 9.1 5.8 1.0 6.8 11.5 17.0 
S5 7.2 9.7 6.0 1.1 7.0 11.8 17.4 
LSD 0.4 0.6 0.3 0.4 0.3 0.5 0.5 

<0.05) 

These results indicate that most morphological markers of the 
juvenile (last leaf with juvenile wax, last node with adventitious 
roots) and adult (first leaf with adult wax, first leaf with 
pubescence) vegetative phases are not affected by inbreeding 
depression, suggesting that these traits are governed primarily 
by additive gene action. Tiller number, which has been used as a 
marker of the juvenile-vegetative phase in studies of heterochronic 
mutants, was significantly affected by inbreeding depression, 
suggesting that dominant gene action governs this trait. Tiller 
number may not be a useful heterochronic marker in wild type 
populations of maize. In a diallel of six maize populations, Revilla et 
al. (p. 84 in Abstr. 87th ASA Meeting, 1995) found a significant 
(p<0.05) correlation among last leaf with juvenile wax, first leaf 
with adult wax, and last node with adventitious roots (last leaf 
with pubescence was not evaluated in that study), but no 
correlation between any of these traits and tiller number. To
gether, these results suggest that the timing of vegetative phase 
change in Minn11 P c3 is governed primarily by additive gene action, 
although a dominance component may exist. This agrees with Re
villa et al. who found significant (p<0.05) general combining ability 
for these same traits while specific combining ability was not sig
nificant. 

MADISON, WISCONSIN 
University of Wisconsin 
COLUMBIA, MISSOURI 
USDA-ARS 

Alteration in the timing of vegetative phase change associated 
with nine cycles of divergent selection for rind penetrometer re
sistance in Missouri Stiff Stalk Synthetic 

--Abedon, BG; Darrah, LL and Tracy, WF 

Vegetative development in maize can be divided into juvenile 
(basal) and adult (distal) phases, each with distinct morphology 
and physiology (Poethig, Science 250:923-930). Juvenile leaves 
lack trichomes and are covered with an epicuticular waxy bloom, 
giving the leaves a grayish appearance. At juvenile nodes, adventi
tious roots are produced and axillary buds develop into tillers. 
Adult leaves have three types of trichomes (macrohairs, bicellular, 
and prickle) and are covered with glossy wax, which gives them a 
green appearance. Adult nodes do not produce adventitious roots. 
Axillary buds from adult nodes either develop into ears or are 
suppressed. The existence of heterochronic mutants ( Corn
grass1, (Cg1), g/ossy15 (g/15), Teopod1, Teopod2), which alter 
the timing of vegetative phases, suggests that heterochrony has a 
strong genetic basis in maize. Studies involving these mutants 



Table 1. Developmental trail means in MoSSS divergently selected for rind penetrometer resistance. 

Developmental trait 
First Last Tiller Adv. 

Cycle adult juv. Leaf # roots 
wax wax hair 

C9high 6.4 7.9 5.3 0.1 7.3 
C4high 6.5 8.0 5.2 0.1 6.8 
co 7.1 9.3 6.5 0.4 6.8 
C4Iow 6.7 8.7 6.6 0.6 6.9 
C9Iow 7.1 11.3 7.1 0.8 7.0 

LSD 0.2 3.2 0.4 0.3 0.6 
£.05 

indicate that the juvenile and adult-vegetative phases are 
regulated independently of each other (and of reproductive initi
ation) but overlap in a transition zone that normally occurs be
tween leaves five and eight in most US field corn backgrounds. 

Variation in the timing of developmental phases (heterochrony) 
has adaptive value and evolutionary importance in a number of 
plant species (Lord and Hill, p. 47-70 in Development as an Evolu
tionary Process, Alan R. Liss, New York, 1987). Until recently, 
there was little evidence of an adaptive value for heterochrony in 
maize. Abedon and Tracy (J. Hered., in press) found that adult 
resistance to common rust (Puccinia sorghi Schw.) and European 
corn borer (Ostrinia nubilalis Hubn.) is delayed in Cg 1, which has 
an extended juvenile-vegetative phase. Passas and Poethig (p. 83 
in Abstr. 37th Annu. Maize Genet. Cont.) found that an acceler
ated transition to an adult epidermis in leaves of g/15 mutants re
sulted in increased resistance to European corn borer relative to 
wild type sibs. These results suggest that heterochrony may have 
adaptive value in normal populations of maize and be a source of 
variability for agronomic performance. 

Stalk lodging can cause substantial yield losses in maize pro
duction fields. Efforts to develop stalk lodging resistant 
germplasm at the University of Missouri have focused on recurrent 
selection for rind penetrometer resistance (RPR) in Missouri 
Stiff Stalk Synthetic (MoSSS). RPR is measured at the middle 
of the internode below the ear node. Two populations, divergently 
selected for high and low RPR, have been developed. Previous 
studies indicate that selection for high and low RPR has resulted 
in increased and reduced stalk lodging resistance, respectively. 
Our objectives were to investigate heterochrony and other devel
opmental changes associated with nine cycles of divergent selec
tion for RPR in MoSSS. 

In 1995, five cycles (C9high, C4high, CO, C4Iow, C9Iow) were 
grown in randomized complete blocks with three replications at 
the We.st Madison Agricultural Experiment Station, Madison, WI. 
Two row plots were overplanted and thinned to 15 plants per row. 
Data were collected on 20 plants per plot. The duration of the ju
venile-vegetative phase was determined based on the last leaf 
with juvenile wax, last node with adventitious roots, and tiller num
ber. Ear leaf and total leaf number were also determined because 
some heterochronic mutants that affect the duration of the juve
nile-vegetative phase also affect leaf number. The timing of 
adult-vegetative phase initiation was determined based on the 
first leaf with adult wax and first leaf with pubescence. The tim
ing of reproductive phase initiation was estimated based on total 
leaf number and days to 50% anthesis. Ear height, plant height, 

Ear Leaf# Ear ht. Plant ht. 50%silk 
leaf (cm) (cm) (d) 
# 

12.3 18.8 126.6 195.7 75.0 
13.2 19.3 109.5 210.8 76.0 
14.8 20.4 188.1 254.5 77.3 
14.6 23.4 135.4 221.4 77.3 
15.1 20.4 132.0 201.2 76.0 

0.4 4.7 51.6 16.2 1.5 

and days to 50% silk emergence were also recorded. Data were 
analyzed by analysis of variance (data not shown) and LSD 
(p<0.05) was used for means comparisons. 

Significant differences among cycles were observed for many 
traits (Table 1 ). Last leaf with juvenile wax showed an increasing 
trend while tiller number increased significantly between C9high 
and C9Iow, indicating that selection for high RPR truncated the 
juvenile phase while selection for low RPR elongated the juvenile 
phase. First leaf with adult wax increased significantly between 
C9high and CO but did not change between CO and C9Iow. First 
leaf with pubescence increased significantly from C9high to 
C9Iow. These results indicate the selection for high RPR resulted 
in a faster initiation of the adult-vegetative phase, while selection 
for low RPR delayed the onset of pubescence without affecting 
the first leaf with adult wax (suggesting that these traits are 
regulated independently). 

Variation in the timing of vegetative phases was not associated 
with changes in the timing of reproductive initiation since total 
leaf number was not significantly different for any cycle (although 
a trend toward lower total leaf number was observed between CO 
and C9high). Ear leaf number decreased from CO to C9high, indi
cating that selection for high RPR resulted in a shift of ear 
placement downward on the plant. Ear leaf number was unchanged 
between CO and C9Iow. Flowering time became earlier in both di
rections of selection. This may have been an artifact of the recur
rent selection program since recombination was stopped in each 
cycle before the latest plants had flowered. These results indi
cate that no relationship exists between the timing of vegetative 
and reproductive phases in these populations. Ear and plant 
height decreased significantly in both directions of selection while 
no significant difference was observed for last node with adven
titious roots. 

The heterochronic effects due to selection that were observed 
in this study suggest that a faster transition to the adult-vege
tative phase is associated with increased RPR in MoSSS. Physio
logical differences between vegetative phases may contribute to 
variation in stalk strength. We plan to replicate this experiment in 
1996 in order to confirm these results. Further investigations are 
also being initiated in order to determine the relationship between 
heter~chrony and agronomic traits in other populations. 
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Dual ancestry of Zea: Sequence evidence at the adh1, 
adh2, sh1 and o2 loci 

--Bird, RMcK 

When last year (MNL 69:100-101) I suggested that compar
isons of gene sequences should allow one to test models of evolu
tion and domestication, I had forgotten a paper I read a decade 
ago, and I had yet to read several more recent papers, all revealing 
unusual variance within species of Zea. Werr et al. (EMBO J. 
4: 1373-1380, 1985) noted such great difference between two 
maize alleles of the sh 1 locus that they estimated that the two 
alleles reflected millions of years of separate evolution. They 
found 16 silent (synonymous 3rd codon) base differences (3.0%) 
among 540 silent positions in 2100 bp of exon DNA that they 
could compare in genomic and cDNA sequences from two maize 
lines. They also found 10 base differences (3.7%) in 270 bp of 3'
untranslated DNA. Using the evolutionary rate of 5.37 base 
substitutions per 1000 silent positions per million years 
determined by Miyata et al. (J. Mol. Evol. 19:28-35, 1982) for 
several animal genes, these indicate that the two alleles separated 
3.0 million years ago (Mya) (evolutionary distance = (26/810) / 
(5.37 I (1000 x 1 My)); age of separation= 1/2 x distance). 

Gaut and Clegg (PNAS 88:2060-2064, 1991) estimated that 
the adh1-1S and adhHFalleles of maize separated =2.6 Mya 
calibrated on the separation of rice from other grasses at 50 Mya, 
separation of Pennisetum from Sorghum and Zea at 25 Mya, and a 
mean coding region substitution rate of 3.63 x 1 o-9 per site per 
year.. Their estimation of the Pennisetum-Zea substitution rate at 
silent exon sites was 7.90 x 10·9 per site per year over the 25 
million years. Later they reported (PNAS 90:5095-5099, 1993) 
on 8 alleles from Z. mays, Z. diploperennis and Z. luxurians, finding 
81 polymorphic nucleotide sites in 1483 silent positions and at 
these sites up to 46 nucleotide differences (between the adh 1-
Po I/ o allele and the adh1+1S, adht+Coroico and Zea 
/uxurians alleles). This can be used to estimate a maximum 
separation for these alleles of 2.0 Mya, based on the 7.90 x 1 o-9 

/site/year silent site substitution rate (=(46/1483) / (7.90 I 
(1000 X 1 My)) X 1/2). 

Based on the same rate, Goloubinoff et al. (PNAS 90:1997-
2001, 1993) concluded that polymorphism in a 315 ±15 bp seg
ment of the adh2 locus indicates that 'the gene pool of maize must 
be at least several million years old" (p. 2000). They included a 
wide range of materials in their study--a tripsacum, several 
teosintes and modern and archaeological maize. A further analysis 
of their data (below) provides yet another conclusion about the 
evolution of Zea. And, most recently, Hartings et al. (MNL 69:18-
19) calculated two ages of separation for alleles at the o2 locus: 
1.06 and 1.86 Mya, based on Kimura's neutral nucleotide substitu
tion rate of 5 x 1 o·9 per site per year. 

These estimates, of course, are subject to redefinition of the 
times when rice separated from other grasses, when 
Pennisetum separated from Sorghum and Zea, and adjustment of 
the synonymous substitution and other silent rates. Also, given 
that these great differences within the maize and the several 
teosinte gene pools are due to introgression between two very 
different ancestors (below), these are minimal estimates in large 
part because recombination within the loci will have created many 
alleles with reduced differences over time. I have found no reports 
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of divergence between species of Zea on the level of thousands of 
years. 

This variation may be explained by the lntersectional 
lntrogression Model of maize origin (Bird, MNL 69:100-101, 
1995), that the two sections of Zea separated for several million 
years and, within the last 5000 years, were involved in a 
hybridization and mutual introgression between a domesticated 
pure maize and a wild teosinte. This is more parsimonious 
(straightforward, simple) than proposing that there were 
multiple domestications of very different Zea species, which have 
since combined into one species, or that there are extremely high 
base substitution rates in maize and teosinte, or that several 
species of Zea are separately maintaining shared ancestral 
polymorphism. 

I would like to demonstrate further evidence that two long
separated ancestors were involved. Figure 1 is the result of tak
ing the partial sequences of alleles of the adh2 locus presented in 
Figure 3 of Goloubinoff et al., deleting all portions with no or one 
shift, placing only the differences in a table, sorting the table to 
place similar sequences together and dissimilar ones far apart, and 
marking with either light or dark background those "shifts" which 
belong to one of two very different "linked sets". Thus, for nu
cleotides 56-103, the g-0000-g-t-gct-t-c linked set (Set T), 
from alleles 9A and 9B of mexicana teosinte, 12B of Z. luxurians, 
4 of Tabloncillo, and 1 A and 1 B of Northern Flint, is shaded 
darkly, while the a-agct-a-c-000-c-g set (Set B), from alleles 7A 
of the Cabuza (Chile) archaeological kernels and BF of a Corn Belt 
inbred, is shaded lightly. For this zone of the locus, the other alle
les are mostly recombinations of the two opposite linked sets. 
There is very little possibility that such linked sets are due to 
fairly recent independent mutational events. Rather they are most 
likely the result of the accumulation of shifts over millions of years 
in two separate taxa, followed by a relatively recent mutual intro
gression and recombination of the two sequences. On the other 
hand, the shift to "t" at nucleotide 75 in allele BA and to "c" at 
nucleotide 79 in alleles 7B and BB could be independent events. 
Possibly the identical sequences of alleles 11 B of Z. diploperen
nis and 6 of the charred Junfn (Peru) cobs and kernels represent 
a third pattern and ancestor. Here the 56-103 set is g-agct-a-c
gct-t-g, and nucleotides 30, 52 and 125 are often "g" in these and 
alleles 12A of Z. luxurians and 5 of Kculli. However, this pattern 
can be explained as a subset derived from the introgression of two 
ancestors plus early independent change. What the two ancestors 
supplying sets T and B might be is not revealed here where a rela
tively small sample has been studied. 

There also seems to be some linkage of the T and B sets to 
numbers of repeats in the GA microsatellite region (nucleotides 
10-35 upstream of the transcription start site): (GA)12-13 in 
alleles 9A, 12B and 1 A, (GA)4 in alleles 7 A and 1 OA, and even 
(GA)8 in alleles 6 and 11 B. At least in this microsatellite zone the 
polymorphism seems conservative. 

Another, perhaps as interesting, feature is the remarkably 
high yet parallel polymorphism in all the species studied. Seven 
shifts separate the two alleles of the Z. luxurians sample, ten sep
arate the parviglumis alleles, and 11 separate two of the alleles 
from the archaeological Cabuza kernels. But the variation runs in 
parallel such that an allele from mexicana teosinte is identical to 
one from Z. /uxurians, and one from Z. diploperennis is identical to 
that from the 440 year-old Junfn cobs and kernels! As 
Goloubinoff et al. say (p. 2001 ), "a phylogenetic analysis [of these 



position: -10-35 -9 30 32 51 52 56 75-78 79 81 92-94 100 103 125 127 158 185 213 
> exon 1 < > exon 2 -- >· 

STATE: top (ga) 13 g C g t C g 0000 g t get t C C ct g* g* g 

bottom (ga)4 t II 
C 

II a agct a C 000 C g a a a 

other (ga)S-9 C g a g t C g 00 
allele 

Z mex mexicana 9A C g t C ct 
Z luxurians 12B C g t C C ct 
Northern Flint 1A C g t C C ct a 
Z mex parviglum 108 C g C C C ct 
Z mex mexicana 98 9 t C g C C C ct 

Cabuza(a) 7C 5 ·g C g . t g ct g 
Z diploperennis 11 A 6 C a C g ct g 

Northern Flint 1B 4 t C g C C C ct a 
Tabloncillo 4 4 t C g C C C ct a 
Confite Morocho 3 4 t C g C C C ct a 

Cabuza(a) 7B 4 t C g C C C ct g g a 

Los Gavilanes(a) BA 6-7° C g C C a C 00 ·0 C g C 00 

Trip pilosum 1P 7t C C a C C C 000 t g C 00 

Z luxurians 12A 6 C a C C g agct .a C get t g g ct 9 g g 
Kculli 5 7 C g C g g . agct a C get t g g ct {I g g 

Junfn(a) 6 8 g g C g g agct a C get t g g ct g g g 
Z diploperennis 118 8 g g C g agct a C get t · g g ct a g g 

Los Gavilanes(a) 88 5-7° C g C C a agct C C 000 C g C ct a a a 
Corn Belt inbred BF 7t C g C C a agct a C 000 C g C ct a a a 
Z mex parviglum 10A 4 t C g C C a agct C 000 C g C ct a a a 

Cabuza(a) 7A 4 t C g C C a agct a e 000 C g C ct a a a 

* a silent nucleotide shift. 
(a) indented: archaeological. 
0 see Goloubinoff et al. Fig 2. 
t in Tripsacum and BF also a GA>AA change. 
Figure 1. Non-unique nucleotide shifts noted in 13 modem and ancient Zea and Tripsacum materials by Goloubinoft, Piiiibo and Wilson (1993). 

data] yields no evidence in support of the notion that modern races feel there is need for such sets--much research has been based on 
of maize emerged from a single common ancestor, such as a spe- materials chosen without regard for comparability to other stud-
cific line of Z. mays parviglumis or Z. mays mexicana." However, ies or repeatability using the same stocks. How could one compare 
the II Model does explain the evidence, though perhaps needing·to or even repeat studies if one study were of isozyme differences 
be expanded to include a// the Zea species as products of the in- between maize and teosinte, the "teosinte" being a few landrace 
trogression of the last four millennia. samples of Z. diploperennis and Z. mexicana from a U.S. genebank 

and the maize being from ears in a private collection, and the other 
The definition of experimental reference sets for Zea study were of RFLPs, the teosinte being an accession of Z. /uxuri-

--Bird, RMcK ans from CIMMYT and the maize being a set of Peruvian lines 

Part of a new project at CIMMYT, in which we are characteriz- supplied by a geneticist? Yet many studies are based upon such 

ing maize genebank accessions through DNA fingerprinting, will be arrays of materials. 

the selection of several sets of materials to be made available for a Previously I defined two reference sets -- 12 maize accessions 

wide range of studies as references or points of comparison. We in one, the other with seven teosinte accessions (Maize for Biologi-
cal Research, W. F. Sheridan, ed., pp 341-350, 1982). Entries 
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were listed in order of 'utility". The criteria for selection were 
distinctiveness using current information, lack of evidence of in
ter-racial introgression, availability in a public genebank, and, to 
some degree, adaptation to U.S. conditions. Researchers at Pio
neer Hi-Bred International have studied 30 inbred lines in many 
ways (Smith et al., Maydica, 36:213-226, 1991 and three earlier 
papers). These form a reference set for Pioneer use, but several 
public lines, Mo17, 873 and A632, have been included, so these 
three can be compared using morphological, agronomic, isozyme 
and RFLP data, a small reference set. 

The criteria above are those being used here except we will pay 
less attention to U.S. adaptation and will look for use of the entry 
in prior comparative studies. One set will sample the overall vari
ation of the genus Zea increasing the 7-teosinte set to ca. 12 
members. The second set may include the 12 maize races in the 
1982 set, though checked for appropriateness of the member ac
cessions and availability at CIMMYT. Another set might be in
breds such as the U.S. public lines listed above plus some CIMMYT, 
European, African and/or Asian inbred lines. Here an added cri
terion is the sampling of known and suspected heterotic groups. 

Phyllotaxy of maize 
--Bird, RMcK 

In yet another way maize is different from the usual plant -
the phyllotaxy of the alicoles of its ears does not follow the Fi
bonacci series. The leaves of most higher plants fall into 2, 3, 5, 8, 
13, 21, etc. ranks along the stem where there is one leaf per node 
or 4, 6, 8, + ranks for opposite or whorled phyllotaxies. Maize 
ears, however, have ranks (stachys) of every number from 3 to 16 
or more, switching, as rank numbers increase, between whorled, 
even-numbers of ranks and spiral, odd-numbers of ranks with sin
gle alicoles per node. 

By clearing the glumes from sweet-corn cobs after dinner, 
marking the spikelet pairs and trying different spiral patterns, I 
found one rule governed all: alicoles two ranks apart are linked in a 
spiral or a whorl. Thus, on a cob with seven ranks (14 kernel 
rows), one follows the rule in a spiral going twice around the cob 
passing through seven contiguous nodes to reach the next alicole in 
the same rank, a "2/7" phyllotaxy. On a cob with eight ranks, one 
finds alicoles two ranks apart are linked in a whorl of four, and the 
next whorl of four is offset by one rank. I have never seen a 3/8 
phyllotaxy in maize. 

Of course, this is not the full story. While cobs with even num
bers of ranks have ranks which parallel the axis, those with odd 
numbers have slightly spiraled ranks meaning that a phyllotaxy 
such as 2/7 really needs to be defined by a number like 21n1. But 
that's another study, as is the morphogenetic basis of this phe
nomerm. 

MEXICO D.F., MEXICO 
ORSTOM and CIMMYT 

Studies on the genetic control of apomixis in Tripsacum 
--Grimanelli, D; Leblanc, O; Perotti, E; Gonzalez-de-Leon, D 
and Savidan, Y 

Apomixis in higher plants refers to several mechanisms of 
asexual reproduction through seeds. In all cases, apomictic pro
cesses bypass both meiosis and egg cell fertilization, producing 
offspring which are exact genetic replicas of the mother plant. In 
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Tripsacum (x=18), the closest apomictic relative of corn, all poly
ploids reproduce through the diplosporous type of apomixis 
(Leblanc et al., Am. J. Bot. 82:57, 1995). Diplospory results from 
meiotic failure in megasporocytes that directly develop into ma
ture unreduced female gametophytes through three or more mi
toses. Typically, it is a facultative phenomenon, and an apomictic 
plant usually produces both asexual (apomeiotic) and sexual 
(meiotic) embryos. Apomixis in Tripsacum, as in other apomictic 
species studied, has been thought to be controlled by one dominant 
allele. 

As part of an effort to transfer apomixis to maize from 
Tripsacum, we recently reported the identification of RFLP 
markers linked with diplospory in a maize-Tripsacum F1 population 
(Leblanc et al., TAG 90:1198, 1995). We used the markers to 
analyze various generations of maize-Tripsacurrrhybrids and back
cross derivatives and define a model for the genetic control and 
inheritance of diplosporous reproduction. Here we report some 
results and propose a transposon-tagging-based strategy for 
further studies of apomixis in Tripsacum. 

As expected, maize and Tripsacum genomes are significantly 
colinear. This is obviously of great interest for mapping 
Tripsacum: we can switch from anonymous mapping to comparative 
mapping, and screening for a specific zone in the Tripsacum 
genome can be based efficiently on maize mapping information. 

An important feature of apomixis is its relation to polyploidy: 
except for rare exceptions, apomicts are polyploids, while sexual
ity in the same species, if known, is usually found at lower ploidy 
levels. Two hypotheses have been proposed regarding the mecha
nism thought to prevent apomixis in diploid genotypes. The first 
one (Nagler, Bot. Helv. 92: 13, 1982) assumes that the allele or 
alleles responsible for the apomictic development are not 
transmitted through haploid gametes. Therefore, apomixis would 
not be recovered in diploid plants. The second one proposes a 
dosage effect in which diploid plants do not express apomixis, 
although the corresponding alleles may be transmitted (Mogie, 
Biol. J. Lin. Soc. 35:127, 1988; Noirot, J. Evol. Biol. 6:95, 1993). 
Our results (Grimanelli et al., manuscript in preparation, 
summarized in Fig. 1) suggest that the gene(s) controlling 
apomixis in Tripsacum are linked with a segregation-distorter
type allele promoting the elimination of the "apomixis allele(s)" 
when transmitted through haploid gametes. This would explain 
why apomixis is not recovered in diploid plants, and has strong 
implications for transferring apomixis to diploid crops. 

Furthermore, a significant difference appeared when we 
looked at the segregation of four RFLP loci surrounding the gene 
of interest in both the apomictic tetraploid and the sexual diploid 
Tripsacum. It seems that recombination is restricted at the 
tetraploid (apomictic) level as opposed to both the diploid 
(sexual) in Tripsacum and maize, as represented in their RFLP 
maps. 

Because the specific chromosome segment shows a restricted 
level of recombination, the classical model of monogenic inheritance 
for apomixis probably needs more careful analysis: whatever the 
number of genes involved, they surely behave as a single locus in 
segregating populations. This observation is consistent with the 
existence of a segregation distorter linked with the "apomixis al
lele(s )". Meiotic drive systems can usually be associated with 
chromosomal structural modifications, such as inversions, that lo
cally restrict recombination, further creating linkage disequilib
rium between the distorter allele, the target loci, and eventually 



maize (20M) x Tripsacum dactyloides. (2n=4x=72Td} J Tetraploid apomictic 

1:1 segregation A:S Fl-46-A (10M + 36Td) x Maize 

J Fertilization of unreduced gametes of the Fl 

Diplosporous ---- BCl-56-A (20 M + 36Td) x Maize 
reproduction 

80% L----- ---+ -- - ---, 

Fertilization of 
unreduced gamell!li 

16.4 

BC2-66-A 
(30M+ 18Td} 

meiosis and 
fertilization 

3.4% 

haploidization 
0.3% 

BC2-3 8-S 
(20M + 18Td) 

BC2-28-A 
(10M + 18Td) 

Figure 1. Chromosome numbers, constitution and modes of reproduction in maize-T'.ipsacum 
hybrids and some backcross derivatives (A: apomlclic, S: sexual, M: m~I~e, Td: Tr,psacu'!1 
dacty/oides x=18). Under the hypothesis of Mendelian Inheritance of ~pomIxIs, lhe characler Is 
expected to segregate 1:1 in the BC2-38 plants. Of ca. 6000 progenies we produced from the 
facuitatlve apomictic BC1 plants, 218 BC2-38 plants originated from the sexual development 
of embryos, but none was apomiclic. By contrast, rare dihaploid plants were produced thr~ugh 
parthenogenetic development of such reduced gametes, and were faun~ to be apomI~ts. 
Segregation of the diagnostic bands for mode of reproduction I~ consistent ~1th the expression 
of the trait. The segregation indicates a strong selection against th~ apo_mIc!Ic allele(s) . . The 
analysis of further generations (data not shown)_ suggests that the d1stort1on Is best explained 
by the presence of a segregation distorter allele, linked with apom1XIs. 

modifier alleles (for a review of segregation distorters, Lyttle, 
Ann. Rev. Gen. 25:511, 1991 ). 

Several on-going programs are aiming at the isolation of the 
genetic system responsible for apomixis, and its transfer to 
crops. The usual hypothesis is that a single allele could account for 
the whole developmental process of apomictic reproduction. Our 
results do not claim the existence of several genes, but at least 
suggest the possibility of a cluster o~ l_inked loci. To det~rmine 
the number of genes controlling apomfx1s, as well as potent,all~ to 
isolate the corresponding alleles, we started a transposon tagging 
experiment. Apomictic maize-Tripsacurr: dihaploids (10 chromo
somes of maize + 18 chromosomes of Tr,psacum) were crossed to 
Mutator lines, kindly provided by Mike Freeling. Because a~omixis 
is essentially a facultative phenomenon, most of the progenies are 
clones of the mother plants, but about 10% result from fertiliza
tion of unreduced gametes. Those plants consequently have 20 
chromosomes of maize plus 18 of Tripsacum, and are both apomic
tic and Mu active. We are presently checking the level of Mu 
transposition. . . 

This transposon tagging experiment has three maier obJec
tives. First, we expect to obtain evidence for the existen~e _of 
regulatory activities: while the plants remain perfec~ly apom1cttc, 
the level of expression of the. trait (level of facultat1veness) may 
vary, due to disruptions of some regulatory gene~. _Second, from a 
qualitative point of view, we may disr~pt apol!11ct1c devel~pment 
totally or partially, and therefore get information concerning the 
number of genes involved. A major target in that case is _th~ s~g
regation distorter allele, since it represents a strong hm1tat1on 
for the transfer of apomixis to maize. Finally, we should be able to 
analyse the behavior of Mu when transmitted through ameiotic ga
metes. 

MILAN, ITALY 
DIFCA* and Dept. of Genetics and Microbiology•• 
University of Milan 

The dappled mutants affect endospenn development 
--Castiglioni**, PF; Allegra**, D; Hoxha*, M; Todesco••, G; 
Dolfini**, Sand Gavazzi*, G 

While screening for mutants affecting aleurone pigmentation 
we isolated several independent mutants exhibiting a mutable aleu
rone pattern. The mutants are referred to as Dap (defective 
aleurone pigmentation) and their origin, segregation values and 
kernel weight are given in Table 1. Two additional isolates, Dap*-9 
and Dap*-10, have not yet been analyzed. 

Table 1. Dappled mutants description. 

Muta•! S~l!lbQI Qligin Muta•t ~Qg111uat1,m n Muta•! '.1'.!0Wbl l~WII 
~ .s.E. 

Dap'-1 EMS 43.1 1.0 5053 58.4 
0ap'-2 EMS 40.9 2.3 922 55.8 
Dap'-3 EMS 43.9 1.2 1779 63.0 
Dap'-4 UV 36.3 6.1 1008 75.2 
Dap'-5 XRAYS 38.7 1.9 1143 70.7 
Dap'-6 EMS 47.8 2.1 2174 40.8 

The phenotype of Dap seeds consists of purple tiss~e of vari
able size and shape on a yellow background, as previously de
scribed by Stinard and Robertson (MNL 61 :7-9, 1987). In addi
tion, opaque white sectors are frequently observed on the yellow 
background. Dap*-6 can be easily distinguished from the other 
isolates, since it conditions dark purple sectors on a weak red 
background as if pelargonidin rather than cyanidin is accumulating. 
All six Dap mutants are associated with a significant reduction in 
seed size, leading sometimes to extremely defective seeds. 

The segregation values reported in Table 1 are observed when 
Dap/+ females are crossed to purple aleurone males. In fact, a 
common feature shared by all Dap isolates is the observation that 
crosses in which Dap plants are used as females segregate for col
ored and dappled seeds, while crosses in which Dap plants are 
used as males give only colored seeds. These segregations disclose 
a significant shortage of the mutant over the expected one-half 
and a dominant expression of the mutant over the wild-type allele. 

Although dappled is not expressed in male outcrosses, it is 
male transmissibile in the case of Dap*-3, Dap*-4 and Dap*-6, 
but not of Dap•-1, Dap•-2 and Dap*-5 isolates. Its recovery, 
however, is erratic and lower than the expected one-half (compare 
results obtained in 1994 and 1995 in Table 2). So, when Dap/+ 
plants enter the cross as males, in three cases Dap gametes 
contributing to the endosperm formation are apparently selected 
against; on the contrary, in the other three isolates male 
transmission leads to gene silencing in the endosperm, since the 

Table 2. Male transmission of Dapas delermined In the progeny ears from ou1cr.9sses of het• 
erozygous dappled males to purple aleurone females. Results obtained in summer 1994 and 
1995 are presented separately. 

Muta•! S~l!lbQI Ma!.e.. Qaa Iiaasml~IQn [o/tl lo · 
1994 n11J 1995 n11J 

Dap'-1 none 53 none 61 
Dap'-2 none 31 NDl2l 
Dap'-3 44.4 54 18.2 66 
Dap'-4 34.2 38 14.7 34 
Dap'-5 none 49 none 70 
Dap'-6 16.6 78 none 58 

(1) no. ears examined 
(2) ND : Nol Determined 
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mutant is recovered and expressed again in the next generation, if 
transmitted through the female. 

The reduced frequency of Dap seeds recovered in both male 
and female outcrosses and the lack of recovery of homozygous Dap 
seeds in the selfed progeny of Dapl+ heterozygous plants could 
be the result of a gametophytic selection against Dap alleles oper
ating more drastically in the male versus female gametophytic gen
eration. If selection is mediated by chromosome breaks, pollen 
sterility should be observed and indeed the field analysis of plants 
heterozygous for Dap•-1, Dap*-2, Dap*-3 and Dap*-6 confirms 
the expectation (estimated pollen sterility of 30% or more). 

To inquire about Dap mutants and their transmission, it would 
be useful to establish their chromosomal location. We first at
tempted to obtain this information with Dap *-1 and Dap *-2, 
because we had some indication of their linkage with sh1, a marker 
oi the short arm oi chromosome 9. The recombination values of 
the three point testcross of heterozygous Dap Bz Sh I + bz sh 
females to homozygous + bz sh males are 17. 7 ± 1. 7 for Dap-bz 
and 2.9 ± .7 for bz-sh (n = 490). To establish if Dap is proximal 
or distal to the sh-bz segment a three point testcross was done 
with bz and wx (bz-wx distance 25 cM). The results place Dap 
proximal to bz, leaving still undefined the orientation of Dap in 
regard to wx. Assuming Dap is distal to wx the recombination 
values of the bz wx + I Bz Wx Dap testcross are 18.0 ± 1.6 for 
bz-wx and 2.1 ± .6 for wx-Dap respectively (n= 606). Dap*-2 
also appears to be located on the short arm of chromosome 9 
(Oap*-2-sh recombination value : 18.3 ± 1.2; n = 1000), 
suggesting a possible allelism between the two mutants. 

To test the allelism of Dap mutants, one can cross different 
Dap isolates inter se, select dappled seeds in the F1 and outcross 
F1 females to purple aleurone stock. One-third of the ears so ob
tained should be homozygous Dap in the case of allelism or segre
gate Dap vs. colored seed in a 3: 1 ratio in the case of non allelism 
and independent assortment; if the two Dap are linked, one-third 
of the progeny ears should segregate a majority of Dap seeds 
(75% or more, depending on the linkage intensity). 

Out of seven outcrosses of Dap*-1/Dap•-s F1 females, five 
segregate Dap and colored seeds with a Dap shortage (37%), 
while two ears show an excess of Dap seeds (66.9%), a result 
expected in case of non-allelism. Progeny ears of Dap*-1/Dap•-4 
female outcrosses segregate Dap and colored seeds with a 
shortage of Dap. This unexpected result could indicate allelism, if 
we assume that Dap*-1/Dap*-4 seeds are not viable. For a 
cytological characterization of the mutant, different approaches 
were followed. Histological sections were obtained from seeds of 
different Dap mutants, at 25 days after pollination and after an 
exposure to light for 48 hours. The presence of a continuous 
aleurone layer was observed in all mutants, demonstrating that 
the lack of anthocyanin accumulation in colorless sectors is not the 
consequence of the absence of aleurone cells in the depigmented 
areas. The same conclusion was reached by scanning electron 
microscopic analysis on the Dap*-1 mutant. 

In order to correlate cellular morphology with presence or ab
sence of pigments, fixation and histological procedures were per
formed preserving anthocyanins· in the aleurone cells. Colorless 
aleurone cells show an abnormal morphology, if compared to pig
mented cells. In general, colorless cells appear irregular in 
morphology, smaller and flatter than normal ones and occasionally 
binucleate. More than one layer of aleurone cells may be present 
and sub-aleuronic cells are irregular and disconnected. The defect 
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is confined to cells of the endosperm, since histological sections of 
mature seed embryos do not reveal any difference between normal 
and mutant seeds. 

To investigate the lack of pigment in aleurone cells, in situ hy
bridization experiments were set up, with the aim to check for the 
presence of A 1 mRNA in colored and colorless regions of the aleu
rone. A 1 is a structural gene coding for dihydroquercetin reduc
tase, an enzyme of the pathway which leads to anthocyanin accumu
lation. The experiments show a correlation in all Dap mutants be
tween the presence of A 1 mRNA and the presence of anthocyanins 
in colored aleurone cells. On the other hand, in cells devoid of pig
ments, the A 1 transcript seems absent (Fig. 1 ). These results 
would demonstrate that the anthocyanin biosynthetic pathway in 
mutant cells is blocked and could help in further studies on this 
mutation. 

Figure 1. a and b. Presence of A 1 transcripts exclusively in colored aleurone cells of Dap'-2 
seeds (25 DAP) visualized by in situ hybridization; al aleurone, p pericarp. 

MILAN, ITALY 
lstituto Biosintesi Vegetali-CNR 

Transformation of maize endosperm cells by electroporation 
--Locatelli, F; Castelli, S; Genga, A; Viotti, A and Manzocchi, 
LA 
In vitro endosperm cell cultures represent a valid system to in

vestigate cereal seed maturation, in that they maintain some phys
iological features of the native tissue (Felker and Goodwin, Phys
iol. Plant. 88:1235-1239, 1988). In this laboratory, long term en
dosperm cell cultures have been established from A69Y wildtype 
and opaque-2 maize. Cultured cells synthesize (though at low lev
els) zeins with the typical pattern of the native endosperms 
(Manzocchi, Bianchi and Viotti, Plant Cell Rep. 7:639-643. 1989; 
Manzocchi, Plant Cell Rep. 9:555-558, 1991 ). Cells have been 
used to isolate protoplasts, which have been transformed by 
polyethylene glycol in experiments of transient expression and 
stable integration (Giovinazzo, Manzocchi, Bianchi, Coraggio and 
Viotti, Plant Mol. Biol. 19:257-263, 1992; Faranda, Genga, Viotti 
and Manzocchi, Plant Cell, Tissue Organ Cult. 37:39-46, 1994). 

We present preliminary data here on the transactivation of a 
21 Kd zein promoter by the transcriptional activator OPAQUE2, 
through transformation by direct delivery of DNA to endosperm 
cells by electroporation, according to the method of D'Halluin et al. 



(K. D'Halluin, Bonne, Bossut, De Beukeleer and Leemans, Plant Cell 
4:1495-1505, 1992). 

The DNA constructs used in the experiment were: p472-
GUS, containing the uidA (beta-glucuronidase) gene under the 
control of the 800bp promoter of a 21 kd zein gene, fused to a 
zein enhancer-like element; and p501, containing the 1550 bp cod
ing region of maize Opaque2 gene, under a CaMV 35S promoter 
(Quattrocchio, personal communication). Aliquots of approxi
mately 200 mg of A69Y endosperm cultured cells were electropo
rated, in the conditions described by D'Halluin et al., in the pres
ence of 20 ug DNA of each construct. After electroporation, they 
were plated on standard agar growth medium (Manzocchi, 1991 ). 
The expression of the GUS reporter gene was detected on cell ex
tracts at different times after electroporation, with the spec
trofluorimetric method (Jefferson, Kavanagh and Bevan, EMBO J. 
6:391-397, 1987). 

Data reported in Table 1 show that, in the presence of the se
quence coding for the transcriptional activator 02, the expression 
of GUS under the control of a zein 21 Kd promoter is 6 fold en
hanced. Enhancement can be detected both at short times after 
cell transformation, and several months later. These data are in 
agreement with a possible stable integration of the constructs in 
the DNA of a number of cells; this would confirm, in a stably trans
formed homologous cell system, the transactivatioh of a zein pro
moter by the transcriptional activator 02, which had been ob
served by Ueda et al. (Plant Cell 4:701-709, 1992) in experi
ments of transient expression. In this experiment no selectable 
marker was employed, but experiments of co-transformation with 
NPTII and bar constructs are in progress, in the aim to select 
stable transformants. 

Table 1. GUS expression (pmoles MU/min/mg protein) in cultured A69Y maize endosperm cells 
transformed through electroporalion. 

Weeks aflecelw;1roooraUao 
2 
16 

0.6 
0.44 

llliA 
Jlill. 
7.9 
1.06 

~ 
33.2 
6.48 

We can conclude that the method of intact cell electroporation 
can be successfully employed to transform maize endosperm cell 
cultures; with a suitable selection system allowing the isolation of 
transformed cell lines, and their molecular characterization, it will 
provide. a useful tool in the study of gene regulation in maize en
dosperm. 

Does the combined action of methylation and a maternally im
printed factor repress endosperm expression of paternal specific 
alleles of the zein multigene family? 

--Castelli, S; Ciceri, P; Genga, A; Lazzari, B and Viotti, A 

We are interested in elucidating the molecular mechanisms un
derlying the specific expression of those zein genes that undergo 
parental imprinting in maize endosperm. Previous data on zein 
gene modification and transcription (Bianchi and Viotti, Plant Mal. 
Biol. 11 :203-214, 1988; Lund et al., Plant J. 8:571-581, 1995) 
suggested that endosperm-specific expression of some zein alleles 
occurs via parental imprinting. This could be mediated by the dif
ferential methylation of the maternal and paternal zein gene se
quences, the hypomethylation state of the maternal copies corre
lating with their expression (imprinted state). 

It is reported and generally accepted that mutations at the 
Opaque2 regulatory locus severely reduce the synthesis and the 

accumulation of the heavy chain zeins (H1 and H2 bands in SDS
PAGE). In analyzing many maize lines carrying different mutations 
at the 02 locus (Bernard et al., Plant Mal. Biol. 24:949-959, 
1994) we confirmed the previous observation only for some of 
them. We noticed, however, that several lines showed the presence 
of the H1 band or only a moderate reduction of both H1 and H2 
bands. Two dimensional analysis, carried out first by charge and 
theh by size fractionation, evidenced that those o2 lines showing 
the presence of the H1 band in fact expressed three to four 
polypeptides with different charge. 

These particular patterns allowed us to further and more ac
curately investigate the imprinting phenomenon by proper crosses 
between H1-plus (H1 p) lines and H1-null (H1 n) lines. A prelimi
nary analysis using the H1 p line, NYRo2-/t, in reciprocal crosses 
with three different H1 n lines (Rossmano2-R, W64Ao2-T or 
Mo17 o2-R) indicates among the six possible crosses the absence 
of the H1 band only in the Rossmano2-R /NYRo2-/t cross. This 
suggests the presence of a maternally imprinted factor (MIF) 
that specifically represses the expression of those zein genes con
tributing to the H1 band. This was confirmed by the analysis of 
the reciprocal crosses between three other H1 p lines (W22o2-lt, 
331602-/t, Bianchio2-/t) and two of the three H1 n lines used in the 
previous experiments (Rossmano2-R and W64Ao2-T). Within 
the twelve resulting crosses only the ones that have as maternal 
contribution -to the endosperm complements-the Rossmano2-R 
genotype show the absence of the H1 polypeptides. 

We should remark that the link between a specific modification 
state of certain zein alleles and a MIF is not an exclusiveness of the 
crosses between Rossmano2-R and the H1 p-lines. In fact, the im
printing phenomenon has been observed also for the other size 
class zein polypeptides in reciprocal crosses involving other lines, 
with maintenance of the specific uniparental behaviour. 

At present, the working hypothesis not only favours the occur
rence of the trans-acting factor(s) MIF (line specific?) but also 
predicts the possibility that the zein modified genes mediate the 
action of the MIF by remaining in the default methylation state 
when they participate in the crosses as paternal contribution to 
the endosperm complements (Lund et al., Plant J. 8:571-581, 
1995). 

MOSCOW, RUSSIA 
Institute of Plant Physiology 

Cross-tolerance to drought, salt and low temperature of maize 
plants regenerated from PEG-resistant cell lines 

--Dolgykh, YI; Larina, SN and Shamina, ZB 

Drought-tolerant plants have been regenerated from PEG
resistant callus lines of hybrids Chi31 xCateto S.G. and 
Chi31 xTuxpeno Norteno (MNL 69:105-106, 1995). Their re
sponses under salt and low temperature stresses were compared 
with the responses of the initial plants used for callus production. 

Fifty kernels from each regenerant family were placed under 
moisture at 1 O and 26 C. The relative rate of emergence of 
seedlings at 1 O C was determined. The frequency of germination 
in all regenerant families exceeded the control value (Table 1 ). 
Seedlings after selection on PEG were also more tolerant to frost 
(-3 C for 2.5 h) than initial plants. 

To determine the salt-tolerance, kernels of nine regenerated 
plants were germinated on 2% NaCl solution and then the 
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Table 1. Emergence of the seedlings at 10 C. 

Family number 
Control 
R 90 
R91 
R96 
R 98 
R 121 

Germination % 
22.0 
66.7 
34.8 
56.5 
40.0 
84.0 

seedlings were grown in soil with increasing concentrations of 
NaCl (0.5 to 1.2%). When the content of salt reached 1 % all initial 
plants and plants of one regenerant family were lost. In other 
families 7.1 to 77.8% of plants stayed alive and could grow on 
1.2% NaCl {Table 2). Part of the families were homogeneous: all 
seedlings demonstrated a similar level of viability and growth ac
tivity (fam. 90,91,98, 121 ). In other families segregation took 
place: average viability was low but surviving plants grew on salty 
soil very well (fam.68). 

Table 2. Viability and growth rate of seedlings on 1.2% NaCl. 

Eamllyaumbllr ~ Eresb weigbt Qij Wl!lgbtlglolaal) 
Control 0.0 
R90 20.0 10.8 1.65 
R91(1) 38.9 11.9 1.60 
R91(2) 33.3 4.0 0.51 
R96 0.0 
R98 77.8 13.3 1.63 
R 119 76.5 11.2 1.60 
R 121 11.8 5.1 0.49 
Control 0.0 
R68 9.1 22.2 2.42 
R 83 7.1 10.5 1.20 

These results show that the resistance of in vitro cultivated 
cells to osmoticum can be realised in the regenerated plants as tol
erance to several environmental stresses. 

Tissue-specific isoperoxidases in differentiating and dedifferen
tiating maize cells 

--Zabrodina, MV; Serdobinskii, LA; Dolgykh, YI and Khavkin, EE 

Regenerated plants and their sexual progeny were obtained 
from immature embryo-derived callus cultures of A 188 inbred, 
and the isoperoxidase spectra were studied in their etiolated and 
green leaves as described elsewhere (Khavkin and Zabrodina, 
Russ. J. Plant Physiol., 41:754, 1994). In somaclones, in contrast 
to the initial plants, the leaves manifested a peroxidase band coin
ciding, by its mobility, with the root-specific isozyme Px12. This 
band was barely discernible in the young leaves of the regenerated 
plantlets grown in agar and became heavily stained in the green 
leaves of the 11 to 20-day-old plants grown in sand or soil (Fig. 1 A 
and B). 

The anodal isoperoxidase spectra in the calli obtained from 
different tissues were quite similar and differed considerably 
from the isozyme patterns of the respective explant tissues: a new 
band appeared in the position of the Px12 isozyme, and Px9 band 
staining was enhanced. The primary calli from the scutellum and 
the apical meristem were two exceptions from this pattern: we did 
not observe the Px12 band in these calli, however, the correspond
ing band finally appeared in the scutellum callus after several sub
cultures. In the roots regenerated from the calli of different ori
gin, Px9 and Px12 staining increased to the level of the primary 
roots of the initial A 188 seedlings (Fig. 1 C). 

We presume that cell dedifferentiation in vitro may somehow 
disrupt the tissue-specific control over peroxidase expression, 
and the newly established pattern of peroxidase manifestation is 
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A. Seedlings of the inltlal A188 Inbred 

• 2 5 e 7 9 1D 

Pxt2 -----Pd ----Px10 - --- --
B. Seedlfngs of the someclonos R27, R111 end R119 (the third seed generation) 

2 3 • 5 e 

Px12 - --- -----
Pd - - - -

Px10 - - - ----- -
C. The explants, calli and regenerated roots 

2 1·1 12 13 14 15 9 18 17 19 19 2C 

-Px9-
Px10 _ _ _ 

------~ 
-- -- -- -

Figure 1. The last-moving anodal lsoporoxldases In lnlacl and cullivaled maize tissues. 
Seedling tissues (lho numbers in brackets stand for !he seedling age, days) : 1, endosperm (3); 
2, scutellum (3}; 3, embryo axJs (3); ~. primary root (7), 5, mesoootyl (7); 6, ooleopUle (7); 7, 
eliolatod leal (7); 8· 10, green leaf (11, 14 and 20). CulUvaled In vilro llssues: I 1, prtmary 
sculel !um-derived callus; 12, sculellum-dorlved callus alter prolonged subcuJturing; 13, roots r&
generated lrom sculellum-deiived callus; 14, aplcal meristem-derived callus; 15; roots regen
erated from merislom-derived callus; 16, leaf-derived callus; 17, roots regenerated from leal
derived callus; 18, developing tassel; 19, tassel-derived callus; 20, roots regenerated from tas
sel-derived callus. 

further maintained as a meiotically heritable state. The age-de
pendent quantitative changes in Px12 staining suggest that both 
in the calli and intact plants, this isoperoxidase could be related to 
vascular differentiation. 

MOSCOW, RUSSIA 
Institute of Agricultural Biotechnology 
COLUMBIA, MISSOURI 
USDA-AAS 

The clusters of development genes as seen against the UMC 1995 
~ 

--Khavkin, E and Coe, EH 

Previously (MNL 68:61, 1994; MNL 69:106, 1995; Russ. J. 
Plant Physiol. 42: 408 & 558, 1995) we have hypothesized that 
corn developmental genes associate into functionally meaningful 
clusters, 1 O to 30 cM long, comprising the loci for environmental 
and hormonal sensors (e.g., phy1, abp1, dB and vp1), the growth 
machinery genes (e.g., for the enzymes of hormone synthesis) and 
the master genes presiding over the spatial and temporal transi
tions in cell growth and development (e.g., homeobox genes). The 
initially delineated clusters accounted for most of the naked eye 
polymorphisms related to growth and development, including /es 
and nee loci presumably associated with programmed cell death. 
The clusters that manifested the most comprehensive pattern of 
developmental genes usually included knox and/or other homeobox 
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Figure 1. Genes and QTLs for growth and development. Tentatively located genes and sequences are italicized; homeobox genes and sequences are in bold. MCA are MADS-box containing RFLPs. 
Coinciding MADS-box sequences mapped in different laboratories could represent one and the same locus. 
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sequences. The majority of over 400 major QTLs for plant 
architecture, growth and development in vivo and in vitro, the 
grain yield as the integer of growth, and ABA accumulation and 
effects, mapped within these clusters. 

Figure 1 presents the profiles of the developmental genes, 
cDNA sequences and QTLs refitted to the new UMC 1995 map. 
Several new genes, e.g. for gametophyte development, and new 
homeobox sequences were added using the data from the 1995 
Gene List, 1995 UMC and BNL maps and the papers by 
Kerstetter et al. (Plant Cell 6:1877, 1994), Fischer et al. (Nucl. 
Acids Res. 23:1901, 1995) and Mena et al. (Plant J. 8: 845, 
1995). The QTL database was supplemented from several 
additional sources (CIMMYT, 1994 QTL data in MaizeDB; Abler et 
al., Crop Sci. 31:267, 1991; Schon et al., Heredity 70:648, 1993; 
Doebley et al., J. Hered. 85:191, 1994; Ragot et al., Crop Sci. 
35:1306, 1995; Ajmone-Marsan et al., Theor. Appl. Genet. 90:415, 
1995; Austin and Lee, MNL 69:7, 1995; Beaumont et al., Genome 
38:968, 1995; Berke and Rocheford, Crop Sci., 35:1542, 1995). 

Taking into consideration the mapping accuracy, the clusters 
of developmental genes generally coincide with the location of 
homeobox sequences and with the QTLs for growth, development 
and grain yield, especially in chromosomes 1, 3, 5, 8 and 9. The 
most prominent and challenging exceptions are the bins 2.02 and 
4.07, where only a few QTLs correspond to several important de
velopmental genes, and homeoboxes are missing, while in the bins 
6.04 and 7.05/06, the largest QTL peaks and/or several home
obox genes are inadequately matched by naked eye polymorphisms; 
in contrast, in the bins 2.10 and 10.00 homeobox genes are not 
substantiated with the classical developmental genes and QTLs. 

When accepted as a working model, the cluster hypothesis 
poses several questions which at present can be answered only 
tentatively, by referring the reader to other relevant evidence. 
(1) What are the putative functional and physiological advantages 
of gene association into clusters? We presume that the clusters 
are the units of genes expressed in concert to contribute for plant 
growth, development and apparently some of the plant responses 
to stress. The close association of the functionally related genes 
in the clusters would contribute to compartmentation of signal 
molecules and help cooperatively recruit the transcription factors, 
e.g. MADS-box proteins, into multicomponent regulatory modules 
of high specificity (Krumlauf and Gould, Trends Genet. 8:297, 
1992; Jacob, C. R. Acad. Sci. 316:331, 1993; Shore and 
Sharrocks, Eur. J. Biochem. 229:1, 1995) and thus would facilitate 
fine tuning of growth and development. (2) Why are several 
physiologically different traits of plant development mapped by 
one and the same molecular probe? We may envision QTLs as pro
jections onto the phenotype of the key structural loci providing for 
the various essential elements of growth and development (dwarf 
and viviparous genes are good examples) or of the master 
switches of development, like knox and MADS-box genes, and thus 
such loci are pleiotropic by definition. (3) Why is one and the same 
developmental trait mapped to several widely distant loci? Two 
answers are possible. First, the loci defined as different genes 
can manifest one and the same physiological trait (e.g., stunted 
growth). Second, drawing an analogy from metabolic regulation, 
we may believe that the position of a bottleneck locus in one and 
the same developmental pathway may change in different genotype 
x environment interactions, and thus different key genes are 
manifested in various segregating populations employed for QTL 
mapping. (4) Why so many clusters? One partial answer to the 

evident redundancy of developmental clusters is the hypothesis of 
paleopolyploid corn origin; in addition, later duplication events 
could contribute to the redundancy: it is remarkable that most 
clusters border the centromeres where duplicated regions are 
most often found (Helentjaris, MNL 69:67, 1995). (5) What is 
the adaptive significance of developmental gene associations? A 
suggestion to support the advantage of clusters comes from the 
evidence of selective pressure maintaining the polygenic com
plexes that comprise relatively few pleiotropic genes (e.g., for 
plant height and flowering control) as the integral units through 
the evolution of Poaceae (Lin et al., Genetics 141 :391, 1995; 
Paterson et al., Science 269:1714, 1995); the superiority of clus
ters may reside in the complementary gene interaction within a 
conserved chromosome segment resulting in numerous manifesta
tions of heterosis (Bingham et al., Crop Sci. 34:823, 1994). (6) 
How do different genes for physiologically similar functions (e.g., 
plant height) and the whole clusters as functional units interact 
when redundant and located on different chromosomes? The re
cent topic of homology-dependent gene silencing may hopefully 
provide some explanation in the near future. 

MUNCHEN, GERMANY 
Ludwig-Maximilians-Universitat 

Towards an in vitro recombination system mediated by the maize 
Activator (Ac) element transposase 

--Rudenko, GN and Kunze, R 

Transposition of Ac is mediated in vivo by the element-encoded 
transposase, a protein of 807 AA with a molecular weight of 112 
kD. Ac is structurally similar to some other eukaryotic transpos
able elements. These elements generate 8 bp duplications at their 
genomic integration sites and the sequences of their terminal in
verted repeats are similar. The polypeptide sequences of the 
TPases of these elements are highly homologous along their ca. 
600 C-terminal residues. This suggests a common mechanism of 
transposition. It is believed that Ac transposition occurs in a non
replicative manner via a 'cut-and-paste" mechanism similar to that 
of the P element from Drosophila and bacterial transposons Tn7 
and Tn10. Genetic data indicate an association of Ac transposition 
with DNA replication. However, no in vitro transposition products 
or reaction intermediates involving eukaryotic transposases have 
been described until now. 

To study the activities of the Ac TPase on the enzymatic level, 
two interrelated aspects are being approached. One concerns the 
identification of Ac TPase enzymatic activities and the biochem
istry of specific TPase-mediated DNA rearrangements. Local
ization, mapping and further dissection of the specific Ac TPase 
catalytic domain(s) responsible for the recombination reactions is 
the second scope. 

To begin with dissection of the components required for a cell
free transposition system, we have primarily concentrated our at
tention on the wild type Ac TPase (1-807 AA) and its N-termi
nally truncated derivative ( 103-807 AA). Both proteins are 
functional in vivo and recognize in vitro specifically the 11 bp ter
minal inverted repeats of the element and multiple AAACGG or 
similar sequence motifs present in its subterminal regions. These 
proteins as well as a number of mutant derivatives were overex
pressed in E.coli cells and purified either using Ni-chelate affinity 
chromatography and gel filtration on Superdex 200 column and/or 
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by preparative SDS-polyacrylamide electrophoresis. Final prepa
rations are free of contaminating proteins as judged by Western 
blot analysis and visual inspection of protein gels. Purified pro
teins have been tested for DNA-binding activity using gel-retar
dation assays. 

It is important to note that all recombinases studied to date 
have a DNA-topoisomerase activity. Association of a topoiso
merase-like activity with Ac TPase might be a key to our under
standing of the Ac TPase functionality. Therefore purified 
TPase preparations have been tested for relaxation activity in 
standard assays using either a negatively supercoiled substrate 
DNA construct containing a complete Ds element {a non-au
tonomous Ac derivative) or <pX 174 DNA as a control. We have 
been able to detect such an activity for the wild-type transposase 
and a number of its derivatives. The relaxation activity of the 
TPase is ATP-independent. It is not stimulated by additions of 
mono-, divalent {except Mg) cations and spermidine. Preliminarily 
the protein can be classified as a type I DNA-topoisomerase. 

The topoisomer pattern generated by the TPase on transpo
son-containing DNA is however qualitatively different from the 
one obtained for <pX 17 4 DNA. Under conditions when <pX 17 4 
DNA is fully relaxed, transposon-containing DNA always remains 
underrelaxed. The protection of some supercoils from the topoi
somerase activity indicates a different mode of interaction be
tween TPase and a substrate DNA depending on the presence or 
absence of a transposable element in its context. 

To study TPase-DNA interactions in more detail we have used 
glass-fiber filters to selectively bind DNA-protein complexes out 
of reaction mixtures. This allows separation from free DNA which 
is not retained on the filter. In the absence of divalent cations 
strong binding of the TPase could be detected not only to the Os
containing plasmid DNA but also to single-and double-stranded 
q,X 174 DNAs. Selectivity of TPase binding towards Os contain
ing DNA can however be induced by addition of divalent cations 
(Mg or Ca). Under these conditions TPase does not bind to etther 
of the <pX 17 4 DNAs. The nucleoprotein complex formed between 
TPase and DNA is also quite unusual since it can be dissociated 
only by a treatment with protein denaturants. Comparative stud
ies made on linear or circular DNA substrates lead us to a prelimi
nary conclusion about the existence of a topological lock between 
TPase and DNA in the form of protein clamp around DNA. 

Experiments are under way to determine in which way the 
structural features of TPase-DNA complexes and a topoiso
merase activity displayed by the TPase could be involved in trans
positional recombination. 

Identification of an interaction domain of the Ac transposase pro
tein 

--Essers, Land Kunze, R 

Activator encodes a transposase protein (TPase) which is 
crucially involved in the transposition reaction. TPase binds to 
repetitive subterminal sequence motifs and the terminal inverted 
repeats of Ac (Kunze and Starlinger, EMBO J. 8:3177-3185, 
1989; Becker and Kunze, MNL 69:38, 1995). By immunochemical in 
situ staining it was found that the TPase forms large aggregates 
in the cell nuclei, and genetic experiments suggest that it acts as 
an oligomer (Heinlein et al., Plant J. 5:705-714; Kunze et al., 
PNAS 90:7094-7098, 1993). We assume that the TPase is the 
key and possibly sole protein component of a transposition complex 
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{the 'transpososome"), where it brings the ends of the transpos
able element and the new insertion site in close contact. In this 
model of the transpososome direct TPase interactions have a fun
damental function. To localize the TPase protein/protein-inter
action domain(s) we made use of the yeast two-hybrid-system. 
Initial experiments have demonstrated that the wild type TPase 
and a functional, amino-terminally truncated TPase(103-807) 
derivative, respectively, interact in the yeast cells (Essers and 
Kunze, MNL 69:41, 1995). 

By progressive deletions from the amino-and carboxy-termi
nus of the TPase reading frame we have identified an approxi0 

mately 100 amino acid domain close to the the carboxy-terminus 
(residues 664-754) which is required for a specific interaction 
with the TPase (103-807). A TPase derivative lacking 100 amino 
acids from the C-terminus [TPase (103-709)] does not interact 
with the full length TPase and the TPase (103-807), respec
tively. Thus, the TPase {664-754) domain is the only interaction 
domain detectable with the yeast two-hybrid-system. 

The putative interaction domain contains a region (amino acids 
685-750) which is highly conserved in transposase proteins of 
transposable elements originating from plant and insect species 
(Essers and Kunze, MNL 69:39-41, 1995). We have noticed ear
lier that an insertion of two amino acids within this conserved re
gion at residue 709 results in complete inactivation of the protein 
in vivo, whereas similar insertions at the (non-conserved) residues 
754 and 771 do not affect the transpositional activity {Kunze et 
al., PNAS 90:7094-7098, 1993). This correlates well with the 
results from the two-hybrid-system. The insertion at residue 
709 abolishes protein/protein-interaction in yeast, whereas the 
754 and 771 mutants still interact. . · 

According to our experience it is important to verify the data 
obtained from the genetic two-hybrid-system by biochemical 
techniques. We have expressed the putative interaction domain 
(amino acids 674-777) with a N-terminal histidine-tag in E. coli 
and tested the fusion protein by chemical crosslinking experiments 
for protein-protein interaction. Preliminary results indicate that 
the fusion protein can be crosslinked with EGS [etyhlene glycol
bis(succinic acid N-hydroxysuccinimide ester)] at standard con
centrations, whereas no crosslinking of the control protein 
lysozyme was observed. 

As the self-interacting TPase protein fragment consists of 
approximately 100 amino acids, it is likely that it contains only one 
interaction domain. It probably mediates a symmetric interaction 
('head-to-head") between two TPase monomers. The TPase 
binds to the subterminal regions of Ac and Os elements at multi
ple, five or six bp target sites which are frequently arranged as 
direct repeats. Thus, it seems unlikely that the proposed "head
to-head" contacts are involved in stabilization of neighbouring 
TPase molecules on one end of the transposon. However, such con
tacts could mediate the conjunction between the two transposable 
element ends in a transpososome. The tight connection between 
both Ac ends may be a prerequisite for the initiation of the exci
sion reaction. 

The carboxy-tenninus of the Ac transposase can activate gene 
expression in S. cerevisiae · 

--Essers, Land Kunze, R 

In the course of our two-hybrid studies to localize the Ac 
transposase interaction domain (see above) we detected a tran
scription activation function in yeast of the C-terminal 24 



residues. A fusion of this transposase segment to the C-terminus 
of the GAL4 DNA-binding domain results in a weak, but 
significant transcriptional activation of the lacZ gene in the ab
sence of the GAL4 activation domain. This activity is lost if ap
proximately 100 amino acids are removed from the C-terminus of 
the TPase derivatives. Interestingly, this activation activity is 
only detectable if more than 300 amino acids are deleted from the 
N-terminus of the transposase. We therefore assume that in 
longer hybrid transposase proteins either the fused GAL4 DNA
binding domain or the N-terminal transposase moiety itself masks 
the activation function by steric hindrance. However, the C-ter
minus of the Ac TPase has a very hydrophilic character and thus is 
probably located on the surface of the protein. As the trans
posase protein binds closely upstream of the Ac promoter, it is 
tempting to speculate that it could have a positive autoregulatory 
activity. However, it remains to be determined if transcriptional 
activation by the Ac transposase is also occurring in plants or if it 
is rather a coincidental phenomenon in yeast. 

Methylation of transposase binding sites at the 5'-end of Ac dif
fers in the active and inactive states of the element 

--Wang, L and Kunze, R 

Activator (Ac) transposes following replication from only one 
of the two daughter chromatids. It has been suggested that DNA 
methylation in conjunction with methylation-sensitive transposase 
(TPase) binding to DNA may control the association of Ac trans
position and replication. This mechanism requires that the TPase 
binding sites within Ac are methylated prior to replication. By re
striction analysis of genomic maize DNA with methylation sensitive 
enzymes it has been shown that the three Hpall sites and the Pvull 
site at the 3'-end of Ac in the wx-m9::Ac allele are methylated, 
whereas no methylation could be detected at the 5'-end. In con
trast, during the inactive state of Ac in the wx-m9::Ds-cy allele 
the 5'-end of the element is also hypermethylated (Chomet et al., 
EMBO J. 6:295-302, 1987; Schwartz and Dennis, Mol. Gen. Genet. 
205:476-482, 1986). The TPase binding sites are not accessible 
by any restriction enzymes, however. We have therefore deter
mined the methylation state of these sites at both Ac ends by ge
nomic sequencing. We used the positive display protocol which is 
based on the conversion of unmethylated cytosine residues to 
uracil by bisulfite treatment. This procedure allows the methyla
tion state of individual molecules to be determined (Frommer et 
al., PNAS 89:1827-1831, 1992). We have meanwhile completed• 
the analysis of the active Ac in the wx-m9::Ac allele, and the anal
ysis of the inactive Ac in the wx-m9::Ds-cy allele is in progress. 

The active Ac elements in wx-m9::Ac endosperm exhibit in
triguing methylation patterns at their ends and fall into two dis
tinct groups. Half of the elements are unmethylated throughout 
the 256 residues at the 5'-end (the promoter end). The other 
half is partially methylated between Ac residues 27 and 92. In 
contrast, at the 3'-end all Ac molecules are heavily methylated be
tween residues 4372 and 4554, including the CpG sequences 
within the TPase binding sites (AAACGG). The more internally 
located Ac sequences and the flanking Waxy DNA are unmethy
lated. In addition, methylation of non-symmetrical cytosines (C's in 
other than CpG or CpNpG sequences) in the hypermethylated re
gions of Ac is common. The observed methylation pattern sug
gests that the Ac element is a 'methylation island" which contains 
certain regions whose methylation (and demethylation?) is gov
erned by signals within the Ac sequence. These signals seem to act 

specifically on Ac as the hypermethylation of the Ac 3'-end re
mains restricted to Ac and is not extending into the flanking CpG
rich Waxy DNA. 

Preliminary results indicate that the methylation pattern of 
the inactive Ac in the wx-m9::Ds-cy allele partially differs from 
the active Ac. The 3'-ends of both elements are hypermethylated 
to a similar degree. In contrast to the active Ac , however, the in
active element is also hypermethylated throughout the 5'-end ex
cept the terminal inverted repeat. Obviously, 5'-end methylation 
of the inactive element is not restricted to the Hpall restriction 
sites that are predominantly located in the 5'-untranslated region 
(Schwartz and Dennis, Mol. Gen. Genet. 205:476-482, 1986), but 
includes the TPase binding sites. 

The inactive Ac behaves like a non-autonomous Os element, i.e. 
it is mobilized if TPase is provided in trans. Thus, methylation of 
TPase binding sites at both ends of the element does not inhibit 
transposition, although TPase does not bind to fully methylated 
target sites (Kunze and Starlinger, EMBO J. 8:3177-3185, 
1989). However, after replication the TPase binding sites will 
transiently be hemimethylated and can be bound in this state by 
TPase. Our data are compatible with the hypothesis that DNA 
methylation in conjunction with methylation-dependent DNA bind
ing of TPase is responsible for replication-dependent transposi
tion and the strand selectivity of transposition. 

OTTAWA, CANADA 
Agriculture and Agri-Food Canada 

Release of inbreds with high Gibberella ear rot resistance 
·-Reid, LM and Hamilton, RI 

The first inbreds (CO387, CO388, and CO389) from the 
Plant Research Centre's ear rot breeding program have been re
leased. Their development began as a result of observations in the 
Ontario Soil and Crop Improvement Association (OSCIA) half acre 
plots of eastern Ontario, Canada, in the fall of 1986 during a Gib
berella ear rot (pink mold, Fusarium graminearum) epidemic. Four 
hybrids were significantly less infected, one of which was the sin
gle cross hybrid CO272 X CO265. The source for this resistance 
has now been shown to be CO272, an inbred which appears to pos
sess a single dominant gene for resistance to infection through the 
silk (Reid et al., J. He red. 85: 118-121, 1994). A component of 
this resistance may be a buildup of the wax layer on CO272 silk 
(Bergvinson and Reid, MNL 69: 114, 1995). CO272 was developed 
from (BS1 o x CO109) CO1092 beginning in 1975. BS1 o was 
formerly known as BSTE (Iowa two ear synthetic). CO109 was 
developed by Dr. F. Dimmack from the cultivar Early Butler in the 
1950's. CO265 was developed by Dr. LS. Donovan from the 
1970's commercial hybrid Pioneer 3990 (75 RM). 

In the development of the new lines, CO272 was used as the 
donor parent followed by inbreeding, inoculation and resistance 
screening for several generations. Artificial inoculations were 
conducted by injecting 2 ml of a 5 x 105 spores/ml macroconidial 
suspension of F. graminearum into the silk channel 6 days after 
pollination. At harvest, only those ears with no visible symptoms of 
infection on the kernels were selected and advanced to the next 
generation. In test crosses with susceptible checks, outstanding 
resistance to artificial infection via the silk has been evident. 

CO387 was developed from the CO272 X CO266 hybrid. 
CO387 has reddish-brown dent-flint kernels and a similar silking 
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date as CM105. CO388 and CO389 were developed from the 
backcross population of (CO272 X 873) CO272. CO388 has or
ange dent kernels and CO389 has yellow-orange flint kernels. 
Both are similar in silking date to A632. All three inbreds will be 
released under a research agreement to the corn seed industry. 

PIRACICABA, BRAZIL 
Universidade de Sao Paulo 

Qualitative and quantitative analysis of storage proteins in single 
and double mutants 

--Ricardo A. Azevedo 

The Ask1 mutant (dominant mutation), which leads to an over
production of threonine due to an altered aspartate kinase that is 
less sensitive to lysine inhibition, was transferred to near isogenic 
conversions to the inbred line Cat100-1 in normal and 02 versions. 
Endosperms of the single mutants Ask1 Ask1, 02 o2, double mu
tant Ask1 Ask1 02 02, and the wild type were used for protein ex
traction. Storage proteins were extracted in albumins + globu
lins, zeins, and glutelins fractions. 

The effect of the 02 mutation in reducing the synthesis of the 
zein fraction from 57.6% to 27% was observed, whereas albumins 
+ globulins increased from 9.5% to 22.6% and glutelins from 
32.9% to 50.7%. With the introduction of the Ask1 mutation this 
effect was intensified since the double mutant Ask1 Ask1 02 02 
showed a further reduction in the zein fraction from 27% to 
20.9% and increases in albumins + globulins from 22.6% to 25.3% 
and glutelins from 50.7% to 53.8%. 

The storage protein fractions were also applied to PAGE
SDS and the pattern of bands analysed. Zein in the 02 mutant 
presented 3 bands and although the introduction of the Ask1 mu
tation had caused an alteration in the concentration of zein com
pared to the o2 mutation, this alteration did not alter the distri
bution of the bands. The same result was also observed for the 
other protein fractions indicating that the effect of the Ask1 mu
tation on the 02 mutant is not related to a specific polypeptide. 
These results were confirmed by testing protein fractions by con
ventional isoelectric focusing in amphoteric buffers. 

PISCATAWAY, NEW JERSEY 
Rutgers University 

Are P.locus epiallele methylation status and phenotype set during 
inflorescence or embryo development by maternal influence? 

--Bradeen, J; Timmermans, M and Messing, J 

P-pr is an epiallele of the full red P-rr allele characterized by 
variable g_atterned pericarp and red cob (Das and Messing, 
Genetics 136:1121 ). Also characteristic of P-pr is somatic in
stability as evidenced by frequent cob sectors. Methylation sta
tus of the P-pr epiallele in leaf DNA correlates inversely with ker
nel pigmentation levels and the P-pr pericarp ranges from virtu
ally fully pigmented (similar to P-rr) to virtually unpigmented 
(Das and Messing, Genetics 136:1121; personal observations). In 
the current study, we examine causes of variability of P-pr pheno
type and determine when the methylation status of the epiallele is 
set. Two approaches were used: comparison of within and be
tween plant P-pr methylation levels for plants originating from 
"sector' and 'nonsector" portions of sectored cobs ('sector 
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study") and correlations between P-pr phenotypes of sibling 
plants and their original cob position ('ear map study'). 

In the sector study, ten BC1 cobs ((P-pr x 4Co63:P-ww) x 
4Co63:P-ww) with distinct large sectors were selected and ten 
seeds were planted from each sector and nonsector portion of 
each cob. Three inch leaf tip samples (or whole leaves for small 
leaves) were collected from every true leaf of every plant. P-pr 
phenotypes were determined at harvest for all P-pr/P-ww het
erozygotes and support previous observations that somatic sec
tors yield penetrant phenotypic modification. San digestions of 
DNA extractions from each leaf of phenotypically selected plants 
were hybridized with clone p15 (Das and Messing, Genetics 
136:1121 ), allowing determination of methylation status. 
Methylation status correlated inversely with pigmentation, as ex
pected. Importantly, methylation status was consistent for each 
leaf of every plant; by the time the first leaf was harvested, 
methylation status and consequently P-pr phenotype had been de
termined. This suggests seedling environmental factors are likely 
not important in determining methylation status or P-pr pheno
type within that plaht. Furthermore, these results suggest P-pr 
methylation status and phenotype are determined prior to or at 
germination, most likely in either the gametes or embryo. 

In the ear map study, ten BC1 cobs were selected with differ
ing but uniform pigmentation levels. Ear maps were prepared and 
seed order was randomized prior to planting. Following harvest, 
cobs were superimposed upon corresponding enlarged ear maps, 
allowing visual analysis of cob position effects on P-pr phenotype. 
Although original ear map cobs were uniform (i.e. lacking apparent 
sectors), progeny cob pigmentation was confined to particular ear 
map regions, with similarly colored cobs arising from seed from a 
common region. These results are consistent with the possibility 
that P-pr phenotype is determined during female inflorescence 
development, with kernels that give rise to similarly colored cobs 
arising from a common progenitor cell. (Note that determination 
of P-pr methylation status during embryo development is not 
precluded by these observations. However, determination during 
embryo development requires methylation status to be set for 
each individual embryo, and mechanisms explaining the observed 
clustering of similarly colored cobs must be more complex.) These 
results further suggest maternal somatic instability is an 
important factor in generating variability in progeny cob 
pigmentation and probably methylation levels (work in progress). 
The mechanism giving rise to somatic instability that has no 
apparent phenotype in the individual but affects the phenotype of 
its progeny (as observed in the ear map study) may be the same as 
or different from that which gives rise to visible sectors in the 
affected individual (as observed in the sector study). Ear map 
experiments designed to determine environmental effects on 
phenotype suggest these effects are likely minimal. However, 
environmental effects on future generations have not yet been 
determined (work in progress). 

Positional cloning of dzr1: Physical analysis of the 22-kDa a-zein 
cluster region 

--Llaca, V and Messing, J 

Zeins, the storage proteins in maize, constitute 50-60% of the 
total protein in mature seeds. They are expressed in the en
dosperm, under strict developmental control. They are classified 
into four major groups: 1) a-zeins are 19-kDa and 22-kDa pro
teins encoded by many genes grouped in separate clusters, where 
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Southern blot of gel shown In A), and hybridized to a 500 bp 22-kDa a-zein specific probe. 
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Figure 2. A) Long-range restriction map of the 22-kDa a-zein cluster for 4 restriction endonucleases. B) Southern blot of gel shown in A), and hybridized to a 500 bp 22-kDa a-zein probe. Single
and double-digestions are indicated on top of each lane. 

pseudogenes are also present. Conversely, the other three 
groups, 2) ~-zeins (15 kDa), 3) y-zeins (16 kDa and 27 kDa), and 
4) 1>-2eins (1 0 kDa and 18 kDa) are encoded by unique or a few 
genes (Heidecker et al., Genomics 10:719, 1991 ). The suboptimal 
nutritional value of maize for both humans and livestock is due to a 
large extent to the abundant expression of Heins, which are de
ficient in lysine, tryptophan and methionine. The maize inbred line 
BSSS53 has a 30% higher level of methionine than standard lines 
(Phillips et al., Crop Sci 21 :601, 1981 ). This increase is due to 
overexpression and accumulation of the 10-kDa -zein, which has an 
unusual high (23%) content of methionine. The overexpression of 

the high-methionine zein is postranscriptionally regulated in trans 
by the product of the dzr1 (d.elta-z_ein regulator 1) gene. This 
gene shows allele-specific parental imprinting (Chaudhuri and 
Messing, Proc. Natl. Acad. Sci. U.S.A. 91 :4867, 1994). dzr1 is 
tightly linked to a cluster embodying most of the genes and 
pseudogenes for the 22-kDa -zeins. This cluster spans 3.4 cM on 
chromosome 4 (Chaudhuri and Messing, Mal. Gen. Genet. 246:707, 
1995). 

As part of our initial approach to isolate and characterize 
dzr1, we are constructing the complete physical map of the re
gion where the 22-kDa -zein cluster and the dzr1 gene are located. 
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Figure 3. Partial cosmid overlaps for the two zein subclusters and the php20725 intermediate region in lhe 22-kDa a-zein cluster region. 

This map should facilitate the cloning of the dzr1 gene, which 
would provide novel approaches to increase the nutritional value of 
maize. This study is also expected to contribute to the under
standing of imprinting in maize endosperm and the evolution of 
clustered gene families in cereals. 

Long-range restriction analysis of the cluster. We h·ave opti
mized high-molecular-weight DNA isolation techniques and used 
pulsed field gel electrophoresis to make a long-range restriction 
map of the chromosomal region where the 22-kDa a-zein cluster is 
located. We wanted to determine the maximum size of the locus 
and the relationship between genetic and physical distance in the 
region. As Figure 1 shows, 22-kDa a-zein-specific probes hy
bridize to a single M/ul fragment of 350kb, and to two San frag
ments, of 200kb and 100kb. Further restriction mapping (Figure 
2) indicates that the cluster has a maximum size of 225-250kb 
and is divided into two subclusters of genes. The two clusters are 
3.4 cM apart. One restriction fragment length polymorphism 
(RFLP) marker, php20725, maps between the subclusters, at 1.1 
from one subcluster and dzr1, and 2.3 cM from the other. By 
Southern hybridization analysis we have estimated that there are 
15-17 22-kDa a-zein related sequences (i.e., genes and pseudo
genes) for the inbred line BSSS53. 

Cosmid analysis. To provide a more detailed restriction map, 
we have constructed an overlapping, representative cosmid library 
(>8 genome equivalents) for BSSS53. The library has been am-
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plified in 1700 independent sublibraries. We are isolating cosmids 
harboring 22-kDa zein-related sequences and the RFLP single 
copy marker php20725 in order to create an overlap of the whole 
region. Thus far, we have isolated 15 independent recombinant 
cosmids for the region. Thirteen.cosmids have been ordered into 
three partial overlaps which cover a total of 200kb and include at 
least 14 different 22-kDa zein-related sequences (Figure 3). We 
have subcloned and sequenced 22 zein sequences to identify over
laps and identify in particular the gene 22/6 through its specific 
amino acid sequence. The 22/6 a-zein gene is located at less than 
0.1 cM from dzr1. 

RALEIGH, NORTH CAROLINA 
USDA-AAS 
JOHNSTON, IOWA 
Pioneer Hi-Bred International, Inc. 
AMES,IOWA 
Iowa State University 

Mapping Simple Sequence Repeats in maize 
--Senior, ML; Chin, E; Austin, D; Lee, M and Smith, S 

To date, 127 Simple Sequence Repeats (SSAs) have been 
identified in maize. Sixty of the SSAs were identified through 
searches of the Genbank and EMBL databases. These were 
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mapped to 42 distinct loci throughout the geno~e. Primer s~
quences for these SSAs are available through MaIz~DB. An addi
tional 59 SSAs have also been identified through various sequenc
ing efforts in progress at Pioneer Hi-Bred Inter.national. Forty
two of these have mapped to 31 loci in maize. Primer sequences 
for the latter group will be made publicly . available in the near f~
ture. The microsatellites were mapped using DNA of 192 recombi
nant inbreds of the cross 873 x Mo17, 185 recombinant inbreds of 
the cross Mo17 x H99 or 34 recombinant inbreds of the cross 
873 x G35. The 873 x Mo17 population was used as the primary 
mapping population. Primer pairs that were not polymor-phic in 
873 x Mo17 were mapped using the Mo17 x H99 population. A few 
primer pairs did not show polymorphism among 873, Mo17 or H99, 
but were still considered to be useful markers based on the re
sults of inbred screening and were mapped using the B73 x G35 
population. Linkage analyses were performed using MA_P
MAKER/EXP 3.0 (Lander et al., Genomics 1:174-181, 1987; Lin
coln et al. Whitehead Inst. Tech. Rep., 3rd ed., 1992). The maps 
are show~ on the accompanying pages. SSA loci are shown in bold 
and italics. 

REHOVOT, ISRAEL 
Weizmann Institute of Science 

Evolution of Ac/Ds transposable elements 
--Rubin, E and Levy, AA 

Ac/Os transposable elements constitute a family which co_m
prises several members (Banks et al. C. S. H. Symp. Quant. 8I0I. 
50:307-311, 1985). Only two Ac elements h~ve . bee_n 
characterized so far, Ac1 and Ac9, which are almost 1dent1cal In 
sequence. They both have imperfect t~rminal inverted repeats 
(TIRs) and differ in the range of sequencing errors. Os elements, 
on the other hand, form an heterogeneous group, both in structure 
and sequence. A transposable element has been traditionally 
defined as a Os based on genetic properties rather than on 
molecular data: any element which cannot mobilize itself, but can be 
mobilized by Ac is considered as a Os element. Subseque~t 
characterization of Os elements at the molecular level done m 
several labs is summarized in Figure 1 A. 

Three kinds of Os elements can be identified: 1- those with 
virtually no homology to Ac except in the Tl Rs, like the Os 1 element 
(also known as rUq) ; 2-elements with int~r~al deletions, i_ncluding 
Os9 and the Os in Wx-m5 ; 3-Os's containing both deletions and 
insertions in the internal part of the element, including Os2, and 
the Os's from Wx-b4 and Sh2-m 1. The double Os element from 
Sh-m5933 is made of two identical Os elements, very similar to 
that found in Wx-m5, inserted one within the other (Doring et al., 
Nature 307: 127-130, 1984). All Os elements, except Os1, share 
extensive similarity with Ac, indicating a common origin. However, 
the mechanism by which they were derived from Ac is not known. 

In order to better understand the underlying mechanism of Os 
element formation we have screened for de novo formation of Os 
elements in transgenic tobacco, which offers a Os-free environ
ment. We have used PCR with the primers shown in Fig. 1 B and 
genomic DNA template from plants transformed with Ac _or wit~ a 
Os element which differs from Ac only by a 4bp InsertIon 
(constructs pAGS4411 and pAGS4081 given. by H. Doo~~r). 
Internal deletions (Fig. 1 B) were obtained only with Ac-contammg 
template but not with Os or with a stable Ac. This suggests that 
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Figura 1. (A) Classification of known Ds elements. Ds elements for which sequ~n~e data a'.e 
available (with the excep11on of Ds9, for which only a high-resolution restnct1on map 1s 
available) were compared to Ac. Deletions, compared to Ac, are shown In parentheses. Small 
polymorphisms are indicated as vertical lines. Blocks of insertions are shown as boxes. Boxes 
with the ·same filling are related. The phylogenetic tree, describing relatednes~ but not 
distances among Ds elements, is shown on the right, rooted on the unknown progenitor of the 
Ac/Ds family. It is based on a minimal evolution tree derived from the sequences of the 
subterminal regions at the lett and right ends of the element, whi~ are shared by ~II elements. 
In Sh-m5933, two elements, identical to the one shown here are inserted one w1th1~ the other. 
(B) Nested PCR was used to detect de novo Ds elements form~d fn transgenic tobacco 
plants. Primer position is indicate_d by small arrows ~~ove (for:vard primers) a~d bel011'. (reverse 
primers) a schematic representation of Ac. The pos1t1on and size of each deletion relative to Ac 
was determined by sequencing, and is shown as a bold line. Primer length Is not drawn to scale. 

internal deletion formation is transposition dependent and proba
bly occurs by abortion of an Ac-induced gap r~pair.. No insert_ions 
have been identified, but we are currently usmg different primer 
sets to test for such de novo events. 

While only two almost identical Ac elements are known, an in
creasing number of sequences related to ~c~~cod~d transposas~, 
from maize and from other distant species, Is bemg reported In 
sequence databases. These sequences usually come fro~ other 
known distantly related transposons. Other sequences, with un
known functions, have been reported as Ac-related.-No "host" 
genes with a known function have been found so far, w!th homol?gy 
to Ac. This suggests that Ac comes from a superfamlly of ancient 
transposons rather than it being a recent host gene which ~e?ame 
mobile. The family of Ac-related elements had been on~mally 
designated as the hAT family, for hobo, Tam3 and Ac (Calvi et al., 
Cell 66: 465-471, 1991), other elements were added to this fam
ily as summarized by Essers and Kunze (MNL 69: 39-40, 199~). 
Here we report on further extension of Ac-related sequences with 
the addition of two transposons, Hermit and Hector (Fig. 2), and 
four sequences of unknown function. Two of these sequences, 
from C. elegans, share only one block of homology with all the other 
sequences. This block (see sequence in "conserved region Ill" by 
Essers and Kunze MNL 69:39-40, 1995) might be "the hAT-box1' 
common to all members of the hAT superfamily. Two other se-
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Figure 2. The hAT superfamily. Sequence databases were screened for similarity to Ac, Hobo or Tam3 using iteralive DBase searching. Alignments were performed using the Macaw package, using 
both the GIBBS and diagonal parsing algorithms. Sequences whose gene symbol is in italics are thought to be transpositionally active. For some sequences, obtained through genome projects of 
different species, no function was assigned (Mast, Rest, celc10a4 and cek09al1 ). For Rest alignment was done with preliminary sequencing data obtained In our lab. Boxes with similar filling are 
homologous. Horizontal lines Indicate unique sequences. 

quences, namely the maize and rice ESTs, have been recognized as 
entries in the plant sequences database and were further se
quenced in our lab. The definition of conserved blocks in the hAT 
superfamily might be helpful to better understand transposase 
functions and to further extend the superfamily to other species. 

Transcriptional regulation of Ac by Its own transposase 
-- Fridlender, M and Levy, AA 

Mobility of the maize Ac-Ds transposable element family de
pends on the production of Ac-encoded transposase (TPase), a 
DNA-binding protein which recognizes internal sites near both Ac 
termini. TPase binding sites at the 5' subterminal region were 
mapped at or near sequences which may be important for tran
scription activation (Kunze and Starlinger, EMBO J. 8:3177, 
1989). The proximity between the TPase binding sites and the 
transcription start site led us to hypothesize that TPase may 
regulate its own transcription, as was found for other transpos
able elements. This hypothesis was tested in tobacco, in trans
genic plants and in protoplasts transformed with different fu
sions of Ac promoter and leader sequences to a B-g/ucuronidase 
(GUS) reporter gene. The activity of the Ac promoter, from nu
cleotide 1 (at the 5' termini of Ac) to 346, and Ac promoter and 
leader (1-960) was determined using plasmids pAcpGUS and 
pAcplGUS respectively (see Fig. 1 ). Plasmid pJD330 (35S
GUS) was used both as a positive control for GUS expression and 
as a control for the TPase effect on the expression of a non-Ac
related promoter. In addition a promoter-less GUS gene 
(plessGUS) was used as a negative control (Fig. 1 ). A TPase
encoding construct (St-Ac) was made by subcloning the TPase 
gene under the regulation of a 35S promoter. All plasmids were 
built both in a bluescript backbone for use in transient assays and 
in binary vectors in order to obtain tobacco transgenic plants. 

DNA from each of the GUS-fusion plasmids, or calf thymus 
DNA, was transformed into tobacco protoplasts, with and without 
the _TPase producing plasmid pSt-Ac. GUS activity was de
temiined in protoplast extracts, by the fluorimetric assay with 
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Figure 1. Transposase effect on GUS expression In transient assays. GUS activity is shown 
following transformation of tobacco protoplasts with constructs pJD330, pAcplGUS, AcpGUS 
or plessGUS, without (white columns) or with (black columns) trans posase produced from clone 
pSt-Ac. Treatments with dilferent letters (a to e) are different (P<0.05) as determined by a 
multiple ranking test (SAS, 1990). 

MUG substrate. The average GUS activity of six replicates per 
treatment is shown in Figure 1. In treatments without the TPase
producing plasmid we found that the Ac promoter-leader is ~800 
fold weaker than the 35SQ promoter, as deduced from GUS 
activity obtained with pAcplGUS and pJD330 respectively. When 
GUS-carrying plasmids were co-transformed with the TPase
producing plasmid, pSt-Ac, we observed a significant reduction in 
GUS activity, of two fold with pAcplGUS, and four fold with 
pAcpGUS (Fig. 1 ). On the other hand, the activity of the 35S 
promoter in pJD330 was not affected by the TPase (Fig. 1). 
Therefore, we show that TPase can repress specifically Ac 
promoter expression, independently of position effects. 

In order to determine the effect of TPase on Ac promoter 
activity in transgenic plants, crosses were done between T1 plants 
carrying the TPase producing clone (pSt-Ac) and T1 transfor
mants carrying the GUS gene in which transcription was driven by 
Ac promoter and leader (pAcplGUS). The genotype of the 
progenies from three independent hemizygote T1 pAcplGUS 
plants X T1 pSt-Tpase was determined by Southern blots and 
GUS activity was measured for each of the 15-20 F1 sibling 
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plants grown in each cross. In such an analysis, sibling plants which 
have identical genetic origin and background and identical genetic 
dosage of the pAcplGUS construct, differ only with regards to 
the presence of the TPase gene. Kanamycin resistant F1 siblings 
segregate for the following genotypes in equal ratios: 
(pAcplGUS/_ , _/_) : (pAcplGUS/_, TPase/_) : (_/_, 
TPase/_). The effect of TPase on the element promoter was 
expressed as the percentage of GUS activity of double hemizy
gote plants carrying both GUS and TPase constructs compared 
to siblings carrying only the GUS-fusion gene. In the three 
crosses, we found a reduction in GUS activity in the presence of 
the TPase gene, from two fold in cross 1 to 6.5 fold in cross 28 as 
shown in Figure 2. Plants expressing only the TPase ( _!_ , 
TPase/_ ) had GUS activity similar to background levels (data 
not shown). Similar results were found independently by J. Jones 
(personal communication). Taken together our and Jones's results 
suggest that the TPase-mediated repression observed occurs at 
the transcriptional level rather than post transcriptionally. 

CROSS 1 CROSS 28 CROSS 55 

Figure 2. Transposase effect on Ac promoter--sibling comparisons. The transposase effect on 
GUS expression was studied in young leaves of F1 plants, In three crosses between pAcplGUS 
and TPase-producing pSt-Ac parents (cross 1, 28, 55). GUS activity of double hemizygote 
plants carrying both GUS and TPase constructs (as determined by Southern blots) is ex
pressed as a percentage of the GUS activity in siblings hemizygous for the pAcplGUS 
construct only. The average GUS activity of the pAcplGUS siblings (the 100% value), was 9, 
488, and 248 nanomole MU/mg protein/min, for cross 1, 28 and 55 respectively. Standard 
errors of the means are represented by bars on top of each column. 

Ac joined ends are de1ected upon element excision 
--Gorbunova, V and Levy, AA 

The transposable element Ac has been the subject of intensive 
studies and is thought to transpose via a cut-and-paste mecha
nism. Nevertheless, little is known on how it excises and what are 
the intermediates of transposition. In order to test the possibility 
that extrachromosomal circles are formed upon Ac excision, we 
have used PCR with primers shown in Figure 1, to search for joined 
ends. The presence of joined ends is indicative of either circle 
formation or of presence of two adjacent elements in direct orien
tation (Fig. 1 ). Nested PCR was performed with primers 2 and 3 
in the first round and with primers 1 and 4 in the second round. 
The templates consisted of genomic DNA from transgenic to-
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Figure 1 (A) Set of PCR primers (arrows) designed to amplify joined Ac ends. 
(B) Molecules that could serve as templates for amplification with the primers I, 2, 
3, and 4. 

bacco plants transformed with constructs pAGS4411 and 
pAGS4081, which carry Ac and Os elements respectively (Dooner 
et al., Plant Cell 3: 473-482, 1991 ). DNA from a line carrying the 
bz2::0s2 allele and an active Ac element was also used as template. 

In all Ac-carrying plants, a band of -520 bp was observed on 
EtBr-stained gels. This band has the size expected for precise 
joining of the terminal inverted repeats (TIRs). It was found only 
in lines carrying an actively transposing Ac or Os element, but not 
in the absence of transposition, suggesting that its formation is 
transposition dependent. The 520 bp band was cloned and 
individual clones sequenced (Table 1). The amplified sequences 

Table 1. Sequence at the junction of joined Ac ends 

Cooreptoaf twtl:IR:beaa loiri1oo o/ Ac ends 
CATCCTACTTTCATCCCTG 

Aa) 

TAGGGATGAAAACGGTC 

Seauoocos of the PCB clones 
1 
2 

~~ 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
a> 
21 
22 
23 
24 
25 
a, 

CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATC 
CATCCTACTTTCATC 
CATCCTACTTTCATCCCT 
CATCCTACTTTC 
C 
deletion of 41_bp 
CATCCTACTTTCATCCC 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 
CATCCTACTTTCATCCCTG 

G 
C 
AC 
GC 
GC 
CT 
cc 
AA 
TTG 

~pt 
21bp 
21bp 
27bp 

~cbp 
TAC 
T 

TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
TAGGGATGAAAACGGTC 
deletion of 33bp 
TAGGGATGAAAACGGTC 
ATGAAAACGGTC 
GGGATGAAAACGGTC 
GATGMAACGGTC 
ATGAAAACGGTC 
AACGGTC 
TAGGGATGAAAACGGTC 
GGGATGAAAACGGTC 
deletion of 29 bp 
AACGGTC 

a) The bz2::Ds2 alele of maize, which generated the sequence #4, contains an insertion of Os elemenl wtth 
pertect TIRs. 
b) Clones 11 - 15 contain insertions olthe indicated size, sequences are not shown. 

corresponded to Ac joined ends with short insertions or deletions 
in between the TIRs. Note that no molecules were found with 
perfect joined ends. Short deletions in both TIRs were found in 9 
out of 26 sequenced joined ends. These stuctures are probably 
unable to reintegrate in the genome. Moreover, they cannot 
correspond to tandem jumps as at least one end should remain 
intact. Therefore we conclude .that these deleted joined ends were 
amplified from circular molecules which are abortive transposition 
products formed upon element excision. Another type of 
molecules, which had one end intact and a deletion in the other end, 



were found in 5 out of 26 sequences. These molecules could be 
interpreted either as transposition of Ac in itself near its termini, 
or as an Ac circle. In the latter case, such a circle would probably 
be unable to reinsert. Sequences with intact TIRs are of two 
types: those with insertions resembling the flanking donor site, 
and those with insertions unrelated to the donor. The latter are 
probably not caused by tandem jumps but rather by circularization 
of the ends. The former could in principle be caused by tandem 
jumps, or alternatively, flanking sequences might be carried by the 
circularized element as a result of the excision process. We are in 
the process of determining the origin of the joined ends and of the 
footprints between the ends. Moreover we are testing whether 
circular Os molecules with intact termini can reintegrate into the 
genome via the transposition pathway. 

Ao-induced homologous recombination in transgenic tobacco 
--Shalev, G and Levy, AA 

Ac has been shown to induce intrachromosomal recombination 
between direct-repeats flanking Ac insertion in the maize P locus 
(Athma and Peterson, Genetics 128:163-173). We have further 
investigated Ac-induced homologous recombination (HR) in trans
genic tobacco plants transformed with the constructs described 
in Figure 1. Our recombination assay is based on reactivation of 

3'~GUS 
(pGS00l) 

S'~GUS:Ac 
(pGS00S) 

S'~GUS:Ds 
(pGS009) 

-[fil @I 
35S 

..:::.::;;.::.:;;::;~=-'[✓,,.__ __ 

3'.6.GUS 

B 

nos 3' 

B 
1 ~ 500 hp I 

Rgure 1. Constructs used to monitor homologous recombination in various tobacco tissues. 
GUS transcription is driven by the 35S cauliflower mosaic virus promoter fused to the Q leader 
from tobacco mosaic virus. pGS001 and pGS00B or pGS009 were the recombination 
partners. pGS001 has a 500 bp deletion in the 3' end of the GUS gene, pGSOOB and pGS009 
have a 12 bp deletion in the 5' of the gene(•) which abolishes GUS activity. B= BamHI. 

the B-G/ucuronidase (GUS) gene following ectopic HR between 
two defective GUS genes. In this assay, one HR partner carries 
the pGS001 construct (3' deleted GUS gene). The second HR 
partner carries either the pGS008 construct (5' GUS deletion 
and Ac between the 35S promoter and the deletion), or pGS009 
(5' GUS deletion and Ds between the 35S promoter and the dele
tion). T1 plants transformed with pGS001 were crossed with T1 
plants transformed with pGS008 or pGS009. Blue sectors, fol
lowing X-Gluc in-situ staining of F1 seedlings, were detected only 
in crosses with pGS008, i.e. in the presence of Ac but not Ds. 
These events are interpreted as Ac-induced somatic recombina
tion between ectopic sequences. Data summarized in Table 1 sug
gest that Ac enhances ectopic recombination by at least two 
orders of magnitude. We are in the process of physically 
characterizing these putative recombination events. 

Table 1. Frequency and localization of blue sectors in seedlings. 

Seedling popuiatlon No.of No. of blue sectors detected rn various I 
stained seedling organs b 

seedlings• 
R H C 1st Total 

F1 {S'AGUS:Ac X 3'~GUS) 1266 46 53 50 24 173 
F1 (5'AGUS:Ds X 3'AGUSJ 2400 0 0 0 0 0 
3'AGUS 3300 0 0 0 0 0 
5'AGUS:Ac 1500 0 0 0 0 0 
wild tvoe tobacco 500 0 0 0 0 0 

a - Kanamycin resistant seedlings were hlstochemically stained for GUS activity. Wild type 
seedlings were not germinated on Kanamycln. One third of the kanR seedlings are double hel
eroigo te for the S'AGUS:Ac and 3'AGUS constructs or 5'AGUS:Ds and 3'AGUS. 3/4 a.ro 
kan in Iha selfed 3'6GUS T 2 or selfed 5'AGUS:Ac seedlings. b - Blue sectors were detected 
in the root (R), hypocotyl (H), cotyledon (C) and first true leaves (1 ' 1). 

ST. LOUIS, MISSOURI 
Monsanto Co. 
URBANA, ILLINOIS 
University of Illinois 

Wrinkled auricle (rough sheath?) 
--Duncan, DR and Widholm, J 

In 1988, a large plant regeneration effort was conducted to 
examine the type of somaclonal variation that might arise in the 
H99 genotype. RO plants from approximately 9 month old cultures 
(initiated in the summer of 1987) were planted on the South Farm 
of the University of Illinois in Urbana. These plants were self polli
nated and the R1 progeny were planted again on the South Farm in 
the summer of 1989. Five of eight progeny of a single RO plant 
produced a heritable phenotype which we have called wrinkled au
ricle. Plants expressing the phenotype show varying degrees of 
folds or waves (wrinkles) of excess tissue in the region of the au
ricle. A normal H99 leaf has a distinct white to translucent auricle 
that does not extend completely around the stem. In the wrinkled 
auricle phenotype the auricle and leaf are wrapped around the 
stem; Consequently, as the girth of the stem increases the wrin
kles often tear leaving tattered tissue with browning edges at the 
base of each leaf. The phenotype is first noticed at the V4 or VS 
leaf stage and does not appear to be expressed in any manner in 
more juvenile tissue. In extreme cases, the plants "buggy whip" as 
they mature and are highly contorted but fertile. The leaf blade, 
per se, does not show any signs of abnormality. 

We have attempted over the past several years to do genetic 
analysis of the trait, with little success. We know the trait is heri
table but its expression is extremely sensitive to environmental 
conditions. H99 grows well in a greenhouse and the trait is ex
pressed well in that environment. Space limitations have forced 
us, however, to attempt to work with this trait under field condi
tions. Under the hot and rather dry conditions of Jerseyville, 
Illinois we have seldom seen the trait expressed in field grown 
plants. Plants from remnant seed from the field plantings, when 
grown in a greenhouse, do express the trait. 

Plants grown in the field during 1993 expressed the trait. 
The field conditions in 1993 were extremely wet and relatively 
cloudy with record levels of rainfall (the season was so wet that 
this field planting ended up somewhere in the Gulf of Mexico as a 
result of flooding). The 1993 field observation and the fact that 
the trait is expressed well under greenhouse conditions, suggests 
that the water status of a plant containing the wrinkled auricle 
mutation may regulate the expression of the phenotype. We also 
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cannot rule out a role for heat in regulating the expression of the 
trait, although the summer greenhouse conditions are as hot or 
hotter than our field conditions. It is possible that wrinkled auricle 
is akin to one of the rqugh sheath genotypes, but we have not pur
sued this possibility. 

Presently, we do not have the facilities or commitable time to 
continue studying this somaclonal variant. We would be more than 
happy to supply seed to anyone interested in studying this mate
rial further. 

ST. PAUL, MINNESOTA 

The few days required to induce Zea diploperennis to flower in 
Mimesota 

--Carlson, LA 

In late April of 1994 65 Zea diploperennis plants, P.I. No. 
441931, were planted in isolation in St. Paul, Minnesota. Sixty
three were induced to flower by covering them with 30 gallon gal
vanized trash barrels from 7:00 pm until 7:30 am for a variable 
number of nights. Again in 1995 volunteer plants from the shat
tered seeds were exposed to short days for various numbers of 
days. The volunteer plants from this 250 square meter plot 
exceeded 100 plants. 

No. of plants No. of long nights to No. of days to flower No. of silking locations 
proouwsllkina 

1 3 none none 
1 5 55 days-tassel only none 
1 7 41 days-tassel only none 
7 9 36 5 
2 11 25 6 
5 13 23 7 
10 15 17 4 
7 17 17 11 

Constant observations plus data would suggest tropical 
maize, at least Zea diploperennis, can be induced to flower by cov
ering with barrels for only 11, 12, or 13 days. 

In a separate experiment 23 plants were identified at time of 
first silkings. Days to shattering of seed from the ear were 
recorded. Shattering was assumed when the top one or two seeds 
would disarticulate with a soft bending of the seed from the ear. 
Experience indicated it only takes one or two days from a ripe 
color until disarticulation takes place. 

No. of plants 
2 
4 
7 
10 

Days lo disarticulatlon 
25 
28 
25 
27 

No. of seeds collected 
45 
48 
25 
106 

The seed of Zea diploperennis in Minnesota reached physiological 
maturity in 27 days during the weather conditions of August 
1995. 

ST. PAUL, MINNESOTA 
University of Minnesota 

Plastid localization of a multifunctional acetyl-CoA carboxylase 
--Egli, M and Gengenbach, B 

Acetyl-CoA carboxylase (ACCase; E.C. 6.4.1.2) catalyzes syn
thesis of the malonyl-CoA required for subsequent synthesis of 
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fatty acids and secondary metabolites in plants. Its activity is 
positively correlated with rates of fatty acid synthesis in both 
leaves and developing oil seeds, and thus it may be important in 
regulating plant lipid synthesis. Current information indicates 
that plastidic ACCase activity in dicots is due to a multisubunit 
ACCase enzyme similar to that in bacteria but which is absent in 
the Poaceae (Konishi and Sasaki, Proc. Natl. Acad. Sci. 91 :3598-
3601, 1994). In contrast, most ACCase activity in leaves and oil
storing embryos of maize is associated with a high-molecular 
weight, multifunctional plastid-localized polypeptide (Egli et al., 
Plant Physiol. 101 :499-506, 1993; Somers et al., Plant Physiol. 
101:1097-1101, 1993). Complete coding sequences for higher 
plant MF ACCase polypeptides from wheat (Gornicki et al., Proc. 
Natl. Acad. Sci. 91 :6860-6864, 1994), and several dicots 
(Anderson et al., Plant Physiol. 109:338, 1995; Roesler et al., 
Plant Physiol. 105:611-617, 1994; Schulte et al., Plant Physiol. 
106:793-794, 1994; Shorrosh et al., Proc. Natl. Acad. Sci. 
91 :4323-4327, 1994) have been described. Although de novo FA 
synthesis occurs in plastids, these genes appear to encode cytoso
lic isoforms or their cellular location is unclear (Schulte et al.). 

We recently published the complete coding sequence of a mul
tifunctional maize ACCase that corresponds to one of four dis
tinct types of ACCase genomic clones (Egli et al., Plant Physiol. 
108:1299-1300, 1995; Lutz et al., 37th. Ann. Maize Genetics 
Cont., poster 34, 1995). The N-terminus of the predicted maize 
ACCase polypeptide is longer than that of predicted cytosolic 
ACCase isoforms and it appears to have several properties typi
cal of chloroplast transit peptides: (1) no acidic residues within 
aa# 1-49, (2) high S content within aa# 23-35, and (3) an A-rich 
region between S- and D-rich regions (aa# 36-49) (Von Heijne 
and Nishikawa, FEBS Lett. 278:1-3, 1991 ). In vitro chloroplast 
import assays were used to demonstrate that this putative tran
sit peptide is indeed functional. 

Truncated ACCase cDNAs encoding the first structural do
main of biotin carboxylase (Waldrop et al., Biochemistry 
33:10249-10256, 1994) plus (BCN1; nt 1-833) or minus the pu
tative cTP (-pBCN1; nt 278-833) were synthesized by RT-PCR 
and cloned into the EcoRV site of PCR-script (Stratagene). 
Linearized, capped transcripts were translated in vitro in a wheat 
germ system (Ambion) to produce 35S-polypeptides. In vitro im
port of 355 polypeptides by mesophyll chloroplasts of 7-d old 
leaves of maize (A188) and pea ("Little Marvel") was tested as 
described by Cline et al. (J. Biol. Chem. 260:3691-3696, 1985). 
Aliquots of the import supernatants from lysed chloroplasts and 
of the original in vitro-translated proteins were analysed by SDS
PAGE in 8-25% Phast gels (Pharmacia) and 35s-proteins were 
detected by autoradiography. 

Both pea and maize chloroplasts imported 35 S-B C N 1 
polypeptides but neither imported -pBCN1, which begins at 
ACCase aa#83 (V -> M mutation) and lacks a transit peptide. As 
estimated by SDS-PAGE, 30-min import converted the original 
32-kD BCN1 polypeptide to a doublet of 27.2 and 27.5 kD in 
maize and produced an additional 30-kD band in pea. Formation of 
the 27.2-kD polypeptide could result from cleavage after -aa 
#47, a likely cleavage site because it lies between S- and D-rich 
regions, and R residues are located at -2, -7,and -8 (Gavel and 
Von Heijne, FEBS Lett. 261 :455-458, 1990). Time-dependence 
of BCN1 import was further examined (1-30 min) to determine if 
any imported polypeptides were a result of incomplete processing 
or proteolysis. Import was maximal after 15 min, but import time 



had no effect on the relative amounts of different-sized import 
products. The data suggest that, in maize, efficient cleavage of 
BCN1 occurs at two closely adjacent sites and that partially-pro
cessed products are also formed during BCN1 import by pea 
chloroplasts. 

The maize ACCase gene described here (Genbank accession # 
U19183 ) encodes a protein that contains a chloroplast transit 
peptide which functions in both monocots and dicots; this is the 
first plastidic multifunctional ACCase to be identified in a higher 
plant. 

Characterization of two unique Long Interspersed Nuclear 
Elements (LINEs), co/onist1 and co/onist2 

--Lutz, S and Gengenbach, B 

Maize acetyl-CoA carboxylase (ACCase) is encoded by a small 
gene family, of which four genes have been characterized: A 1, A2., 
81, and 82. Type A and B genes are 96% identical, with con
served introns and 3' non coding regions. Differences within the 
A1-A2 and 81-82 pairs occur mainly in flanking sequences. The 
Type B genes are also distinguishable from the Type A genes, and 
from each other, by the presence of an insertion into an intron 
1400 bp from the translational start site of A 1. Type A genes do 
not contain this insertion and the insertion in the B 1 and 82 genes 
varies in size and sequence arrangement. 

The insertion in Type 81 is at least 6kb and is flanked by a 3-
bp direct repeat. Nucleotide sequence of this insertion shows the 
presence of two unique domains encoding polypeptides with homol
ogy to the reverse transcriptase (RT) domains of LINE-like non
viral retrotransposons, which include three LINEs from plants: 
Cin4 from maize (Schwarz-Sommer et al., EMBO J. 6:3873-3880, 
1987) , de/2 from lily (Leeton et al., Mol. Gen. Genet. 237:97-
104, 1993), and 8 N R from sugar beet (Schmidt et al., 
Chromosome Research 3:335-345, 1995). Genomic library 
screening with each of the two RT domains from maize ACCase 
Type 81 resulted in two different sets of positive clones (none of 
the_ positives from either set contain both RT domains together, 
as 1n B1 ), suggesting these RT domains are part of unique LIN Es. 
These unique elements are designated co/onist1 and co/onist2. 

LINEs were first discovered in mammals and have now been 
found in every eukaryotic species examined. LINEs are believed to 
move. via an RNA intermediate and are characterized by the 
following features: lengths of 6-7kb, frequent deletions of the 5' 
end, two open reading frames (one coding for a reverse transcrip
tase), two cysteine-binding motifs, short direct repeats usually 
<20bp, and an adenine rich terminus. LINE copy number is variable 
with mammalian LIN Es being highly abundant (1 o4 to 105 copies 
per genome) while Cin4 is moderately abundant (50-100 copies 
per genome) (Hutchinson, In: Mobile DNA, DH Berg, MM Howe, 
eds., Amer. Soc. Microbiology, Washington DC, pp 593-617, 1989; 
Z. Schwarz-Sommer et al., 1987). 

Characterization of co/onist1 and colonist2 suggests that 
colonist1 inserted first into this ACCase intron with colonist2 
subsequently inserting into co/onist1. Sequence from the 3' end of 
co/onist1 has 73% identity over 480 nucleotides, in reverse orien
tation, to the largest (1.8kb) intron from shrunken2 of maize 
(Hannah et al., Plant Physol. 98:1214-1216, 1992). Colonist1 is 
characterized by a RT domain having much greater amino acid 
identity (40% in 102 amino acid overlap) to a, a LINE from 
mosquito (Besansky, Insect Mol. Biol. 3(1):49-56, 1994), than it 
does to Cin4 from maize. Neither of the two copies of co/onist1 so 

far studied contain an adenine rich terminus. Colonist2 has an RT 
domain wit_h 44% identity to Cin4 over 198 amino acids of overlap 
and contains the consensus CX1-3CX7-8HX4C cysteine motif 
characteristic of the 3' end of this open reading frame. Colonist2 
appears to have an adenine rich terminus of variable length. 
Genomic Southerns showed colonist1 and co/onist2 to be present in 
the genome at a copy number of 100-500. 

LINEs are generally present as a single family within a given 
species with the exception of Drosophila melanogaster which has 
several families of LINE-like sequence (Di Nocera et al., Genetica 
94:173-180, 1994). With the addition of colonist1 and colonist2 
to the list of characterized LINEs, maize becomes the first plant 
genome shown to contain more than one family of LINE sequences. 

STE-ANNE-DE-BELLEVUE, CANADA 
McGill University 

Reaction of waxy and non-waxy maize Inbreds infected with 
Fusarium graminearum 

--Chungu, C and Mather, DE 

Fusarium graminearum Schwabe, the asexual state of Gib
berella zeae (Schw.) Petch causes ear rot of maize in most maize 
growing areas in the world. The pathogen penetrates ears by 
growth of the mycelia down the silks to the kernels or through 
wounds made by insects or birds. The characteristic symptom of 
the disease is a pink to reddish coloration on the surface of in
fected kernels and husks. 

Warren (Phytopathol.68: 1331-1335, 1978) observed that 
some opaque-2 maize inbreds were more susceptible to F. monili
forme ear rot than their normal-endosperm counterparts. Similar 
observations were reported by Reid et al. (Can. J. Plant Sci. 
72:915-923, 1992) with F. graminearum. Opaque-2 kernels tend 
to be softer, which may allow pathogens to penetrate the kernels 
easily. 

Waxy maize differs from normal dent maize in that its en
dosperm starch is 100% amylopectin whereas that of normal maize 
is composed of 75% amylopectin and 25% amylose. This differ
ence is important to the manufacturers of food and industrial 
products. According to Coe et al. (Corn and Corn Improvement, 
p142, 1988), the waxy kernel type displays uniform marble-like 
opacity and has kernel hardness similar to that of normal kernels. 
Litt~e is known about the relative resistance of waxy inbreds and 
their non-waxy counterparts to ear rot caused by F. graminearum. 
The objective of this study was to compare the responses of waxy 
and non-waxy inbreds to F. graminearum. 

An experiment was conducted at Ste-Anne-de-Bellevue 
(Quebec, Canada) in 1993 (the experiment was seeded again in 
1994, but failed due to poor germination). Eleven waxy and non
waxy inbreds (seed provided by David Baute from MaizeX, On
tario and R.I. Hamilton, Plant Research Centre, Ottawa) were 
planted in a split-plot design with four replications. Inbreds were 
randomi~~d ~s main-plot units and two inoculation methods (silk 
channel m1ect1on and a kernel-stab technique) as subplots. Individ
ual ears were inoculated by: (a) injecting 2 ml of the macroconidial 
suspension in the centre of the silk channel seven days after silk 
emergence, and (b) by inoculating the ears using a kernel-stab 
technique, 15 days after silk emergence. In the latter technique, a 
probe consisting of four nails (1.5 cm) fixed to a cylindrical 
wooden handle was dipped into inoculum and then used to stab 
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through the husk to wound three to four kernels in the middle of 
the ear. Primary ears of the waxy inbreds were bagged before 
silking to avoid contamination with pollen from their normal 
counterparts and were later hand-pollinated. Inoculated ears 
were harvested in mid-October and disease severity assessed by 
rating the percentage of rotted area using a 7-class kernel rating 
scale where 1= no symptoms present, 2=1-3%, 3=4-10%, 4=11-
25%, 5=26-50%, 6=51-75%, and 7=76-100% of the kernels 
infected. Disease incidence was calculated as the percentage of 
ears with severity rating of 2 or greater. Data were analyzed 
using the general linear models analysis of variance, and mean 
comparisons were performed using Duncan's multiple range test. 

Effects due to inbreds were significant (P<0.05) for both 
disease incidence and severity (Table 1 ). Differences between the 
two inoculation methods were significant only for disease severity. 

Table 1. Mean values for disease severity and incidence in Wf!Y1 and non-wf!Y1 inbred lines with 
inoculation techniques at Ste-Anne-de-Bellevue In 1993. 

Sllk:Channal ~ 
~ Severity ~ ~ lll®eJKi 
A632 5.4abt 92a 5.6a 96a 
A632Htwx 5.5ab 100a 5.4a 96a 
A641 5.1ab 100a 5.7a 100a 
A641Htwx 4.7ab 100a 5.7a 100a 
CM105 6.1a 100a 5.1a 100a 
CM105wx 5.8ab 100a 6.1a 100a 
LH74'LH146wx 5.8ab 100a 6.2a 100a 
LH82 4.5b 100a 5.5a 100a 
LH82wx 5.3ab 100a 5.8a 100a 
Mo17Ht 6.2a 100a 6.1a 100a 
Mo17wx 4.5b 100a 4.9a 100a 

t Means followed by the same letter will1in columns are not significanlly different at 0.05 prob
ability level. 

Disease incidence values were high for both waxy and non-waxy 
inbreds. Most inbreds exhibited high disease severity with both 
inoculation methods. Three inbreds, A641wx, LH82 and Mo17wx 
had only moderate disease severity after silk-channel injection. 
However these inbreds were all susceptible with the kernel-stab 
method. 'One inbred, Mo17wx, exhibited lower disease severity 
than its normal counterpart. It appears that most of the inbreds 
evaluated in this study do not have sufficient resistance in the silk 
and kernels to slow or inhibit the spread of ear rot. 

To avoid pollen contamination, the ears of the waxy inbreds 
were bagged prior to silking and the bags remained ?.n the ~a~s 
four weeks postinoculation. The environmental cond1t1ons w1th1n 
the bags could have influenced the spread of ear rot on the waxy 
inbreds. Enerson and Hunter (Can. J. Plant Sci. 60:1123-1128, 
1980) found increased colonization intensity in ears inoculated 
with a toothpick and bagged for 35 to 63 days. In contrast, Sut
ton and Baliko (Can. J. Plant Pathol. 3:26-32, 1981) found th_at 
bagging after inoculation suppressed the growth ~f F. gramm
earum. In this study, it was not possible to determine the effect 
bagging had on disease development. 

This study showed that the inbreds differed in their reaction 
to infection by F. graminearum when the silk channel method was 
used, however, none of the waxy inbreds differed from their non
waxy counterparts. No significant difference was observed 
among inbreds when inoculum was directly applied to the k~rnels. 
We did not find any evidence that the waxy endosperm trait con
fers ear rot resistance or susceptibility. However, our compar
isons of waxy vs. non-waxy lines were confounded by the fact !hat 
ears of the waxy lines were bagged to prevent pollen contamina
tion. 
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Heterochromatic knob-specific repeated sequence is associated 
with the formation of chromosome bridges in cultured cells and in 
germinating roots of aged seeds 

--Fluminhan Jr., A; Ohmido, N; Fukui, K; Kameya, T 
The behavior of chromosomes in anaphase cells of embryogenic 

calli (Type II cultures) has been analysed by means of fluorescence 
in situ hybridization (FISH) with the 180-bp hi~hly repeated DN~ 
sequence found to be a major component of maize heterochromat,c 
knobs (Peacock et al., PNAS 78:4490-4494, 1981; Dennis and 
Peacock, J. Mol. Evol. 20:341-350, 1984). Configurations show
ing the delayed segregation of sister-chromatids, considered to 
be an initial event in the development of bridges (MNL 66:87-88, 
1992; Fluminhan and Aguiar-Perecin, in press), were hybridized in 
situ with the probe pZm4-14 (kindly supplled by Dr. James 
Birchler, Univ. of Missouri). Plasmid DNA with the insert was 
used as the template for direct-labelling during PCR am
plification. Biotin-labelled probes were hybridized at 37 C for 8 
hours, in a 2xSSC / 50% formamide solution, after heating at 70 
C for 6 min., according to Fukui et al. (Theor. Ap~I. _Gen~t. 
87:893-899, 1994). After staining with fluorescem-1soth10-
cyanate (FITC)-avidin conjugate, signals were arr_iplified _by a~ply-· 
ing a biotinylated anti-avidin solution, followed by 1ncubat1on with a 
fluorescein-avidin solution. Chromosomes were then counter
stained with a DAPI solution, and examined by fluorescence 
microscopy. Images were captured by a coole~ -~CD ?amera 
(Photometrics) mounted on the microscope. D1g1t1zed images 
were photographed by a color image recorder. 

FISH with selected anaphase configurations confirmed the in
volvement of the knob-specific repetitive sequence with the event 
of delayed segregation of sister-chromatids (Figu_re 1 ). '.his ob
servation seems to correspond to the hypothesis described by 
Phillips et al. (Proc. 7th Intl. Cong. Plant Tissue Cell Cult., pp. 
131-141, 1990), that variation in DNA methylation could _be_ a 
principal factor in the occurrence of chromosome breakage 1n tis
sue cultures. Dennis and Peacock (1984) have reported that the 
180-bp repeats could show up to ten CG or C_G regions among 
the different clones sequenced. Since these sites are recognized 
to be particularly susceptible to methylation of the cytosine, the 
detection of methylated bases by in situ procedures, as reported 
in mammalian cells (Miller et al., Nature 251 :636-637, 1974), rep
resents an interesting aspect for future investigation. 

Furthermore, we have analysed chromosomal aberrations aris
ing during the first mitosis in root tips germin_ated !rom long
term stored seeds of different genotypes. Conf1gurat1ons show
ing the initial event of delayed segregation of sister chromatids 
have been analysed by FISH as described above. The results were 
very similar to those observed in cultured cells (Fig~re ~)- This 
observation suggests that both systems (culture in vitro and 
storage of dried seeds) could be under the influence of common or 
related mechanisms of cellular senescence, which would lead to the 
occurrence of apparently identical cytological abnormalities at mi
tosis, as discussed elsewhere (Fluminhan and Kameya, Theor. Appl. 
Genet., in press). . 

The behavior of broken chromosomes through successive cell 
divisions has also been investigated. We have collected evidence 



Figure 1. Anaphase cell ol an embryogenlc callus ol S5 progeny obtained from cv. Mexico 
Amber Kernel after fluorescence in situ hybridization (FISH). The arrows show hybridization 
sites to the knob-specific repeated sequence on the initial event pf delayed segregation of 
sister chromatids. • 

Figure 2. Anaphase cell of germinating roots of aged seeds after FISH. The arrows show 
hybridization sites on a configuration of delayed segregation of sister chromalids. 

indicating the occurrence of breakage-fusion-bridge cycles in 
both systems. Figure 3 shows a late anaphase observed in our 
studies with cultured cells, with one single bridge containing two 
hybridization sites to the knob-specific sequence. This figure 
could have originated from successive B-F-B cycles, as illustrated 
in Figure 4. Analysis of such configurations by FISH with the 
telomeric repetitive sequences (TTT AGGG)n has supported the 
proposed mechanisms. A complete report on these findings is in 
preparation. 

Figure 3. Late anaphase of cultured cells after FISH with the knob-specific repeated sequence. 
The arrows show hybridization sites on a chromosome bridge possibly originated from 
successive breakage-fusion-bridge cycles. 
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Figure 4. Diagram illuslraling the origin of a broken chromosome at mitotic anaphases in 
cultured cells and in root tips from germina1tng aged seeds ol maize, and its subsequent 
behavior. 1. Bridge conliguration resulting lrom the initial event ol delayed segregalion ol 
sister-chromatids (Figures 1 and 2). 2. Primary breakages lrequently occur inside the knob. 3. 
One of the sister cells receives a delicient chromosome with a freshly broken end. 4. Fusion of 
replicated broken ends during the subsequent mitosis. 5 and 6. A dicentric chromosome is 
formed that will undergo the chromatld type of breakage-fusion-bridge cycle during each suc
cesslve nuclear division, conforming to lhe behavior described by MCCflntocil (PNAS 25:405· 
416, 1839; Genetics 26:234-282, 1941) wllh the analysis ol gametophyte llssues. 7. Bridge 
conliguration resulling from a previous round of breakaga-luslon-brldge. a. Breakage belween 
the centromere and lhe knob of lhe dlccnlric. 9, The chromosome conlalnlf19 the knob and a 
lreshly broken end rs sent to one ol the sister cells. 10. Fusion of the replicated broken enos. 
t 1. A djcenlnc wllh two knobs Is formed (Figure 3). 12. Breakage at different locations gives 
rlse lo diverse dellclenHlupllcaled chromosome lypes. Letter B indicates positions of 
breakages. A further dfscusslon aboul these mechanisms ls presented In Flumlnhan and 
Agular-Peredo On press) and In Aurnlnhan and Kameya (Theor. Appl. Genet., in press). 
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STANFORD, CALIFORNIA 
Stanford University 

The effect of 5-azacytidine treatment on Mutator activity when 
applied to developing kernels 

--Taylor, Rand Walbot, V 

Mu Dr is an autonomous element of the Mutator family inserted 
into the Bronze2 gene (Bz2). Methylation has been implicated in 
the down regulation of Mutator activity. To reactivate the inac
tive Mutator element, developing kernels were treated with 5-aza
cytidine, an inhibitor of DNA methylation. Mutator stocks contain
ing bz2::MuDr have shown no Bz2 function when crossed to bz2 
lines for 6 generations. The reporter line generates excision spots 
when crossed with an active Mutator line, but when self-crossed or 
outcrossed to bz2 this inactive line yields only about one excision 
spot per 50 ears. To assess the role of DNA methylation in the in
activity of MuDr, 5-azacytidine was applied to young ears and ex
cision of the Mutator was observed as anthocyanin spots on mature 
ears. Using a method previously described (Walbot et al. Maydica 
39:19-28, 1994) the husk tissues were carefully peeled back from 
ears 10-15 days after fertilization and small paper towels soaked 
in either water or 1 O mM 5-azacytidine were applied. The husk 
tissues were replaced with the aid of an elastic band. Only one 
application was applied to the ears. The ears were harvested and 
scored for the presence of excision sectors on the kernels. No ex
cision events were observed in either the water control (6 ears) 
or the 5-azacytidine treatments (16 ears), suggesting that 5-
azacytidine treatment during kernel development does not affect 
the activity status of inactive MuDr. The experiment will be re
peated with additional applications of 5-azacylidine because short 
exposure time or rapid breakdown of the 5-azacytidine may ac
count for the lack of reactivation. 

Toxicity of cyanidin and anthocyanidin 3-glucoside accumulation in 
the gametophyte 

--Taylor, R; Chiusi, A and Walbot, V 

Functional maize pollen is yellow due to the presence of 
flavonoids which are required for germination of the pollen. 
Production of anthocyanin in the pollen can be obtained via 
expression of the r-ch.-Hopi gene, an allele of R. R is a regulator of 
anthocyanin biosynthesis. A proportion of plants carrying this 
allele in combination with Pl produces varying degrees of 
expression from yellow to dark red pollen. It is presently unknown 
whether this anthocyanin accumulation is due to sporophytic or 
gametophyte gene expression. To test whether anthocyanin 
intermediates, cyanidin and cyanidin 3-glucoside accumulated by 
bz1 and bz2, had an effect on pollen viability, we compared 
segregation ratios of pollen with and without anthocyanin. These 
anthocyanin intermediates are known to be toxic to maize plants 
when expressed at high levels. We used plants with genotypes 
Bz1/bz1 and Bz2/bz2 which also contained at least one copy of r
ch:Hopi and Pl. Reciprocal crosses were made to bz1 and bz2 
tester and ears were analyzed for their segregation ratio. If the 
accumulation of these products had no effect on the viability of 
the pollen we would expect purple to bronze kernels at a ratio of 
1 :1. The table shows the segregation ratios for the test crosses. 

No significant differences in the segregation ratios were ob
served between the yellow pollen and red pollen crosses. The seg
regation ratios were 1 :1 among test and control crosses. 
Therefore pollen viability does not seem to be affected by the ac-
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cumulation of cyanidin and/or cyanidin 3-glucoside. To ascertain 
whether there is a sporophytic effect, the toxic affects of ho
mozygous bz1 and bz2 r-ch:Hopi plants are now being examined . 

Bronze1 
Number of ears (95%) 

segr:wuon rauos tournle:bronzel 
Color 1:1 >1:1 1:>1 Color 
Yellow 8 O O Yellow 
Red 9 1 0 Red 
Pink 3 0 0 Pink 

STANTON, MN 
Northrup King Co. 
ODENSE, DENMARK 
Odense Universitet 

Bronze2 
Number of cases (95%) 
Segregation ratios 
lournle•brQnzJ!l 
1:1 >1:1 1:>1 
~ 1 0 
13 1 0 
5 1 0 

RFLP map position of the casein kinase 2 (CK-2) a subunit in 
maize 

--Hanten, J; Edwards, M; Warner, T; Boldyreff, B and 
lssinger, 0-G 

Casein kinase 2 (CK-2) is a ubiquitous and multifunctional 
serine/threonine specific protein kinase that has been implicated in 
the control of cell growth and proliferation. CK-2 has been char
acterized extensively in animals and has been shown to phosphory
late various protein substrates including RNA polymerases, topi
somerases, oncoproteins, and certain receptor proteins. In plants, 
less is known about the substrates of CK-2. The subunit compo
sition of CK-2 in animals is u, u', and~ with molecular weights of 
42, 38, and 28 kDa, respectively. The holoenzyme is comprised of 
a tetramer consisting of u, u', and ~2. Two CK-2-like enzymes 
have been isolated in maize, CKIIA and CKIIB, with reported 
molecular weights of 135 and 39 kDa respectively (Dobrowolska 
et al., Eur. J. Biochem. 204:299-303, 1992). 

To confirm the presence of a CK-2 a gene in maize, a maize 
cDNA library was screened with oligonucleotide probes specific 
for conserved regions of the animal CK-2 a. A clone was isolated 
which exhibited a 75% protein sequence homology to the human 
CK-2 u (Dobrowolska et al., BBA 1129:139-140, 1991 ). This 
clone was expressed in Escherichia coli with a reported molecular 
weight of 39 kDa and designated as recombinant maize CK-2 a 
(rmCK-2 u} (Boldyreff et al., BBA 1173:32-38, 1993). This 
work has demonstrated that the rmCK-2 a is functionally similar 
to the recombinant human CK-2 a (rhCK-2 a} in several respects. 
First, the rmCK-2 u was shown to be immunologically similar to the 
rhCK-2 u by western analysis with affinity purified polyclonal and 
monoclonal anti-human CK-2 u antibodies. Second, the rmCK-2 a 
self assembles with the rhCK-2 ~ to form a complex which 
sediments at the same position as the native mammalian CK-2 
holoenzyme. Third, similar phosphorylation profiles are exhibited 
between rmCK-2 u and rhCK-2 u when different substrates and 
various polyamines are assayed. 

Maize CK-2 u was characterized in a RFLP mapping population 
to establish its chromosomal map position. It was anticipated that 
this information would be useful in determining linkage and 
homology among other maize casein kinase-like genes as they be
come mapped. An 896bp portion of the maize CK-2 a open read
ing frame was mapped by RFLP in a F2 population with 200 indi
viduals using 68 polymorphic markers spread over the genome. It 
was determined with MAPMAKER IBM version 3.0b that maize 



CK-2 ex was located on the long arm of chromosome 2 (2L) ap
proximately 9.6 centimorgans (cM) distal from umc36. In a selfed 
population with 300 individuals using 108 polymorphic markers, 
the maize CK-2 ex probe mapped again on chromosome 2L, 4.9 cM 
distal from umc36. A secondary polymorphism mapped to the 
short arm of chromosome 4 (4S), 4.5 cM proximal to bn/5.46. It 
is not clear what degree of homology exists at chromosome 4S, 
but it is possible that this secondary sequence arose via chromo
somal duplication, a well characterized feature of the maize 
genome (Helentjaris et al., Genetics 118:353-363, 1988). It is also 
possible that another casein kinase-like enzyme or a distinctly dif
ferent enzyme within the maize genome share homology with maize 
CK-2 ex. 

TSUKUBA, JAPAN 
National Institute of Agrobiological Resources 

Agrobacterium-mediated gene transformation in maize 
--lshige, T 

Generally, genetic transformation in grasses has been achieved 
by particle bombardment of intact tissues or electroporation of 
protoplasts. Recently Agrobacterium tumefaciens has been used 
to introduce foreign genes into rice chromosomes, and fertile rice 
transformants were obtained (Hiei et al., Breeding Science Suppl. 
1 :52, 1994). We report here the gene transformation of maize 
using the Ti-plasmid vector of A. tumefaciens. 

Maize calli were initiated from immature embryos of F2 seed of 
an A 188/B73 cross. Type II calli were selected and their regener
ability was evaluated. The chimeric gene RB-NoS-NPTll-35S
HPT-35S-GUS-LB was constructed in PBI 101 binary vector and 
was transformed into LBA4404 strain of A. tumefaciens by 
electroporation. Maize calli were co-cultured with A. tumefaciens 
for three days in liquid N6 medium containing 2 mg/I of 2,4-D and 
the calli were transplanted in N6 selection media containing 2 mg/I 
of 2,4-D, 0.25 mg/I of hygromycin B, 3 mg/I of cefotaxime and 
0.3% of gelrite. The GUS activity of selected calli was analyzed 
by staining the intact tissues. The calli were transferred to N6 
regeneration medium lacking hormones and containing 0.25 mg/I of 
hygromycin B, 3 mg/I of cefotaxime and 0.3% of gelrite. The 
regenerated shoots were transplanted in soil and the genomic 
DNA of the leaf was extracted to confirm the integration of the 
introduced gene by PCR and Southern blot analysis. 

All of the callus lines infected with A. tumefaciens showed a 
blue color due to their GUS activity and GUS activity was not ex
pressed in control calli in the absence of Agrobacterium infection 
(Fig. 1 ). The Southern blot analysis and PCR showed that the in
troduced gene was integrated in the corn genome (Fig. 2). A gene 
transfer method of maize using A. tumefaciens infection was thus 
developed. 

109 106 103 

97 95 Control 

Figure 1. Expression of GUS In maize Hssues after co-cullivatlon with A. tumefac/ens. The 
numbers are given to distinguish the calll from other cell lines of the F2 embryo. The GUS 
activity was determined by staining cells with X-gluc. The activity level vaned among callus 
lines. Control calll without gene transformation did not show any GUS activity. 

1 2 3 

Figure 2. Southern analysis of the transformed maize. Lane 1: J..Hindlll, q>X174Haelll size 
markers. 2: control. 3: transformed maize by A. tumefaciens. DNA (10µg) was digested 
wilh BamHI, and separated by electrophoresis in a 0.7% agarose gel. The DIG-labeled DNA of 
the HPT region was used as a probe of hybridiza lion. 

TUCSON, ARIZONA 
University of Arizona 

Identification of anonymous maize coding sequences by evolutionary 
considerations 

--Winkler, RG 

In the past year I have worked with two anonymous maize cD
NAs; in both cases there was no obvious preferred reading frame. 
In both cases there was no AUG near either 5' end nor were there 
stop sites that eliminated any of the reading frames from consid
eration. Although the sequence of one was extended by RACE, 
there still was not an AUG near the 5' end. In both cases I have 
been able to define a reading frame using a simple evolutionary 
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consideration: Because the third base of the codon is under re
duced or little selective pressure it diverges more rapidly than the 
first two bases. 

Identification of reading frame by interspecies and in
traspecies comparisons. Thus if one compares the sequence of an 
anonymous gene or expressed sequence tag (EST) with the EST 
database (dbEST) and identifies a related gene with sufficient 
overlap, then the reading frame with the greatest variation at the 
third position is predicted to be the correct reading frame: the 
third base of the correct reading frame will vary at a much higher 
rate than the first and second bases of the correct reading frame. 
The translated products of each gene can also be compared to 
give a similar result. This criterion can be applied in multiple ways: 
1) from any genomic or cDNA sequence to ESTs, 2) for gene fami
lies or duplicate genes within a species or even between species, 
for example between duplicate maize genes, 3) between any two 
ESTs. This could in fact be used to systematically identify the 
reading frames of anonymous ESTs or genomic sequences. 

Identification of reading frame by identification of internal 
duplications within a gene. In addition to gene duplication, a second 
driving force in evolution is internal duplication to produce re
peated peptide units. Thus internal duplications within a gene can 
also be used to predict correct reading frames by the same third 
posjtion criteria. This can be approached by matrix analysis of the 
predicted peptides to determine which frame conserves the pep
tide repeats. This could also be used to systematically define the 
reading frames of many anonymous ESTs and similarly could be 
applied to genomic sequences as a test of the possibility that du
plicated sequences are protein coding. 

Identification of the limits of the coding sequence by inter
species and intraspecies comparisons. A related criterion can be 
used to predict the gene product of a genomic or cDNA sequence. 
Since coding sequences are under much greater selective pressure 
than the 5' and 3' untranslated sequences, interspecies compar
isons can be used to predict coding regions. This has been used in 
the past for many known genes: the human to mouse comparison is 
very powerful as are interspecies comparisons in plants. The 
rapid increase of EST data makes this approach more widely ap
plicable. When I compared an anonymous fully sequenced maize 
cDNA with dbEst I observed that a peptide of 80 amino acids was 
conserved between maize and rice and maize and Arabidopsis (the 
rice and Arabidopsis genes were obtained and fully sequenced). In 
addition to establishing the correct reading frame this suggested 
that the entire protein was 80 amino acids long as there was no 
conservation beyond this. This was surprising because the first 
AUG of the maize gene was at bp 300 which is unusually long for a 
5' leader sequence. There were no stop sites in the first 300 bp. 
Although it is possible that axon-sharing could be an explanation 
for this conservation, it is not likely as this transcript is single 
copy. 

The value of these approaches is that by simple computer com
parisons one can rapidly derive testable hypotheses that predict 
the coding frame and coding region of an anonymous sequence. 
Once a peptide is identified it is much easier to start deriving hy
potheses on its function by further analysis. 

Update on the genetic mapping of the opaque2-modifier genes 
--Moro, GL; Carneiro, N and Larkins, B 

opaque2-modifiers are genes with the ability to convert the 
soft chalky endosperm, as found in maize opaque2 mutants, to a 
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hard, vitreous phenotype. Modified opaque2 genotypes or Quality 
Protein Maize (QPM) have increased levels of the essential amino 
acid lysine and a normal appearing kernel. QPMs have been devel
oped independently at CIMMYT (Mexico) and University of Natal 
(South Africa). Our lab is working on the biochemical, genetic and 
molecular characterization of endosperm modification (for details 
see Lopes et al., MNL 69:125, 1995). Genetic mapping using 
CIMMYT's QPM identified two loci associated with modification, 
the first near the telomere of chromosome 7L and the second at 
the 27-kD y-zein locus, near the centromere on 7L (Lopes et al., 
Mol. Gen. Genet. 247:603-613, 1995). We are now extending the 
mapping effort to QPM lines from South Africa. Two crosses are 
being analyzed: G10 QPM x W64Ao2 and G6 QPM x W64Ao2. 
Our strategy is to perform bulked segregant analysis in the F2 
generation in order to identify RFLPs associated with the modi
fied phenotype. So far we found only one modifier closed linked to 
the y-zein locus. We could not find any polymorphism near the ex
treme of 7L. Also, our results suggest that the duplicated y-zein 
locus (AB) is not necessary for modification, as previously 
thought. Among the 27 F2 individuals of the modified bulk in the 
G10 (AB locus) x W64Ao2 (ReA locus) cross we found one plant 
heterozygous for the y-zein locus (ReAAB). Its seeds had all 
clearly vitreous endosperm with no phenotypic segregation for 
modification. The zein profile of these seeds was typical of modi
fied opaque2 endosperm, with high levels of y-zein and low levels 
of ex-zein. Some F3 plants originated from these seeds had the 
ReA y-zein locus and their seeds were also fully modified. We are 
now performing the biochemical analysis of these seeds to verify 
their zein profile. Also we continue to cover other areas of the 
genome looking for other loci involved in the process of modifica
tion. 

TUCSON, ARIZONA 
University of Arizona 
WEST LAFAYETTE, INDIANA 
Purdue Univeresity 

Elongation factor-1 ex (EF-1 ex) is a biochemical marker for lysine 
content in maize endosperm 

--Moro, GL; Habben, JE; Carneiro, N; Hamaker, B and Larkins, 
B 
We recently reported a very high correlation (r = 0.95**) be

tween the content of lysine and the concentration of the protein 
synthesis factor EF-1a. in the maize endosperm (Habben et al., 
PNAS 92: 8640-8644, 1995). In order to extend our analysis to 
a broader sample of the maize germplasm we characterized 93 
normal and opaqile2 inbred lines. Amounts of total protein, zeins 
and non-zeins were measured by microKjeldhal, and lysine content 
was determined by amino acid analysis. For twenty selected geno
types covering the observed range of lysine content an ELISA was 
used to estimate the relative concentration of EF-1 a and a ninhy
drin assay was used to determine the relative levels of free amino 
acids. Considerable differences in lysine and protein contents 
were observed among normal and opaque2 genotypes, with the ef
fect of the mutation being highly dependent on the genetic back
ground. Not surprisingly, the lysine content was significantly cor
related with the non-zein fraction (r = 0.83*** for all genotypes 
and r = 0.80*** for the selected lines). Most of endosperm lysine 



is protein-bound and, essentially, all the lysine-containing proteins 
are non-zeins. Confirming our previous results, a high correlation 
(r = 0.88***) was observed between EF-1cx and lysine contents. It 
is remarkable that a single protein is at least as predictive of the 
lysine content as the total non-zein fraction. The nature of this 
relationship is still unknown. Although EF-1cx is a lysine-rich pro
tein its mass accounts for only 3-5% of the total lysine in the en
dosperm. Therefore, the high correlation must reflect some com
monality between EF-1cx and other lysine-rich proteins. We are 
now working on identifying such proteins. Independent of that, this 
relationship provides an approach to study the mechanisms regu
lating the synthesis and accumulation of lysine-rich proteins. We 
are also investigating the levels of heritability for EF-1cx content, 
in order to assess its utility as an index for lysine content in 
breeding programs. Additionally, we are working on the 
characterization of the maize EF-1cx gene family. 

URBANA, ILLINOIS 
University of Illinois and Maize Genetics Cooperation 
Stock Center 

Chromosome location of the three Oh51 A pseudorestorer genes 
and their usefulness in studying apparent cases of gene silencing 

--Gabay-Laughnan, S 

The Laughnan laboratory has been identifying and analyzing 
spontaneous nuclear restorer genes of cms-S for over two 
decades. Among the many spontaneous nuclear revertants that 
have been identified is a class we now refer to as "pseudore
storer" (MNL 63: 122, 1989; MNL 63: 122-123, 1989). When 
these phenotypically fertile plants are crossed as pollen parents 
there. is no seed set on the ears; the pollen fails to function. 
Because this class of "restorer" gene produces nonfunctional 
pollen we gave it the symbol Rf-nf. To date, eight independently
occurring spontaneous revertants have been identified as Rf-nf 
genes. 

We are using the wx-marked reciprocal translocation series to 
map the Rf-nf genes to chromosome (Maize Handbook pp.255-
257). Three Rf-nf genes arose in the inbred line--cytoplasm 
combination ems-RD Oh 51A and each has now been located to 
chromosome. The Rf-nfgene 81-67-9 is in chromosome 3 accord
ing to our crosses with wx T3-9c and wx T3-9(8447). Rf-nf 
79-21-27 has been mapped to chromosome 6 by use of wx T6-
9(4505) and wx T6-9(4778). Rf-nf 79-23-27 has been placed 
on chromosome 8 by use of wx T8-9d and wx TB-9(043-6). We 
have previously mapped newly arisen Rf genes to chromosomes 3 
and 8 but this is the first case of an Rf gene in chromosome 6. 

In the course of studies on the allelic relationships of the Rf-nf 
genes, we found that crossing an Rf-nf/rf plant by an unrelated 
inbred line yields F1 plants that produce functional pollen grains. 
Crosses of these F1 plants as pollen parents often produce 
progeny segregating male-sterile plants and, in some cases, all 
male-sterile progeny (MNL 68:105-106, 1994). Since restoration 
of cms-S is gametophytic, all progeny of a cross cms-S rt/ rf x 
cms-S Rf/rt are expected to be fertile. Crosses of these same 
restored F1 plants as female parents give the expected fertile 
and sterile plants. Therefore, the appearance of sterile plants in 
the crosses of the F1 plants as male parents cannot be explained 
by the failure of the Rf-nf gene to express in a particular nuclear 
background. We have been studying the basis for this apparent 

"gene silencing". Now that we have located the three Oh51A Rf
nf genes to chromosome, we are in a position to take a unique ap
proach to the analysis of this phenomenon. 

By crossing each Oh51A Rf-nf gene with its respective non
restoring (r~ wx-marked reciprocal translocations we effectively 
link the Wx gene to the Rf-nf gene. The heterozygote can be sym
bolized Rf-nf N WxlrfT wx, where N stands for nontranslocation 
(or normal) and T for translocation. Since the wx-marked 
translocations are carried in nuclear backgrounds unrelated to 
Oh51A (e.g. W23, M14 or W23/M14), these F1 plants should ex
hibit functional pollen. By crossing pollen from these plants onto a 
cms-S rf T wxlrf T wx tester strain we can follow the Rf-nf gene 
by its linkage to Wx. This will allow us to determine if the appar
ent gene silencing is due to unexpected transmission of rf (kernels 
will be wx) or to silencing of Rf-nf (kernels will be Wx). 

Is tb•-8963 really an allele of tb1? 
--Jackson, JD 

The COOP's tb*-8963 mutant, on chromosome 1, was allele 
tested with tb1-ref, which traces back to Burnham (MNL 33:74, 
1959). A positive test was observed. The tb*-8963 mutant can 
be traced back to an E. G. Anderson 1957 stock. If anyone has 
further information concerning the origin of these two mutants or 
similar stocks please forward to the Stock Center. 

Allelism testing of unplaced golden stocks in Maize COOP's col
lection 

--Jackson, JD 

This report summarizes allele testing of stocks of unplaced 
golden mutations in the Maize COOP's stock collection. Some of 
these unplaced mutations have been found in other COOP stocks 
and some have been sent in by cooperators over the years. 
Crosses were made between homozygotes or known heterozy
gotes. In most cases plants were scored at the seedling stage as 
well as at maturity. Proposed new designations have been as
signed to these alleles. These stocks have been increased and 
placed on the 1996 stocklist. During the screening of unplaced 
pale-green mutants, one culture was observed to have more of a 
golden phenotype and upon testing was determined to be allelic to 
g2. It is expected that with further sorting of unplaced mutations 
in the COOP's collection additional golden phenotypes will be dis
covered and allele tested. 

timl1M ~kloallw allglllam leSI :illlb ~ allellsm lesl Wllb ft 
g4 positive negative 
g' --56-3005·24 positive negative 
g'--1-7 (x-55-16) positive negative 
g'--68-609-13 positive negative 
g'--56-3040-14 negative positive 
/pg'-56-3040-14) 
g'--59-2097 negative positive 
g'--94-14 78 negative positive 

g4 recovered from Maize COOP stocks 
--Jackson, JD 

Ol!W !lesjgaalloo 
g1-g4 
g/-56-3005-24 
g/-1-7 (x-55-16) 
g/-68-609-13 
!}2-56-3040-14 

!}2-59-2097 
!}2-94-1478 

The golden4 mutant, once thought to be lost, has been recov
ered from stocks at the Maize COOP Stock Center. This mutant 
was originally placed to linkage group 1 (Eyster, Bibliographia 
Genetica 11 :187-392, 1934), which was later renamed linkage 
group 9 or chromosome 9 (Emerson, Beadle, and Fraser, Cornell 
Univ Agric Exp Stn Memoir 180:1-83, 1935). In 1962 g4 was 
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shown to have no significant linkage in a 3-point linkage test with 
wx1 and bm4 on chromosome 9 (Brawn, MNL 36:49, 1962) and 
was then dropped from the 1983 genelist. It was recently relo
cated again among "unplaced goldens" in the COOP's stock collec
tion. 

The recovered stock traces back to maize genetic stocks 
grown by the COOP at Corne)I in 1937. Notes in the records de
scribe distinctly yellowish seedlings that persist and become more 
yellow at maturity. Tests by Brawn and others indicated g4 to be 
allelic to gt on chromosome 10. Crosses were done in the COOP 
nursery that confirm g4 is allelic to gt, and the COOP g4 does not 
seem to be linked to wx1. The stock has been increased and placed 
with other gt alleles. 

Reverse germ orientation mutants 
--Jackson, JD 

In the course of studies with the Laughnan cms-S restorer 
genes, a mutation was observed in an RfVI strain. This new trait 
conditions the germ orientation of embryos causing them to face 
the base of the ear as opposed to the tip. Genetic analysis indi
cates it is a simply inherited trait and is inherited as a maternal 
plant character. Similar mutations were reported previously by 
Brieger (MNL 22:55, 1948) and Joachim (MNL 29:53, 1955; MNL 
30:84-85, 1956; Proc. Minn. Acad. Sci. 24:37-43, 1956). 
Brieger reported an abnormality in which development of the sec
ond flower was observed. Joachim concluded that the so-called 
"reverse germ" in her studies is due to the development of only the 
lower florets in an earshoot as opposed to the usual condition of 
only the upper florets functioning. The name "reversed germ" was 
common in the literature (reviewed in Joachim, Proc. Minn. Acad. 
Sci. 24:37-43, 1956) and no other name was suggested. 
Reversed germs are found in the sweet corn variety Country 
Gentleman in which both the upper and lower florets function 
causing crowding and uneven rows (Kiesselbach, Am. Jour. Bot 
13:35-39, 1925). 

A reversed germ mutation was recovered by Sachan and 
Sarkar (MNL 52:119-120, 1978) in the course of a mutagenesis 
study. They proposed the three letter symbol rgo for the trait 
and their·mutant is now designated rgo1 (see following article). I 
have designated my new mutation rgo• -VI. A similar trait has been 
recovered by Frances Burr. It showed up as a sector on a selfed 
ear carrying yt-m26t ::dSpm. This rgo stock was crossed to 
rgo*-VI for allelism and gave a positive result. The relationship of 
these mutations to rgot is under study. 

Recovery of rgo1 
--Jackson, JD 

A mutation disturbing the orientation of the germ in relation to 
the cob, i.e. the embryo facing the stalk end of the ear as opposed 
to the tip end, has been recovered. It was originally called reverse 
germ orientation (rgo) by Sachan and Sarkar (MNL 52:119-120, 
1978) and is now designated rgo1. Seeds were provided by Dr. 
Sarkar of the Indian Agricultural Research Institute in New Delhi, 
India. These were germinated and transplanted to the field. Due 
to the hot, dry summer and poor growing conditions only a few 
ears that exhibit the trait were recovered. Stocks will be re
grown to increase them further. 
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and Agriculutre 
SEIBERSDORF, AUSTRIA 
FAO/IAEA Agriculture and Biotechnology Laboratory 

How similar are plant telomeres? 
--Weck, E and Grasso, G 

The comparison of cereal species through RFLP hybridizations 
has shown a surprising amount of colinearity among the related 
genomes. Some molecular tools are more useful for intergenomic 
comparisons than others. RFLPs are generally more useful, prob
ably due to the preservation of large regions of sequence within 
genes and structural elements of similar function. RAPDs, and 
perhaps PCR markers in general, may not be as useful, sampling a 
much smaller region of the genome which varies enough to alter re
action products under the exacting conditions of PCR. 

The PCR comparison of common structural elements, such as 
telomeres, should be useful for intragenomic comparisons. The use 
of PCR technology offers laboratories working on under-investi
gated species the opportunity to examine these relationships with 
currently available microsatellite-like telomere sequences. 

We have used a telomere specific primer (Richards and 
Ausubel, Cell 53:127-36, 1988) which points toward the cen
tromere and a maize subtelomere derived primer to compare maize 
and rice with a number of other species that are important in de
veloping countries: baselle (Basel/a spp., African spinach); tef, of 
great importance in southern Ethiopia; banana, important in tropi
cal countries; and date palm, which is of special agricultural impor
tance in northwest Africa. 

The telomere specific primer produced a smear background in 
all species examined along with a number of distinctive bands for 
most species (Fig. 1 ). The maize subtelomere-derived primer 
produced distinctive band patterns in most species examined. 
This suggests that primers derived from gross structural fea
tures of chromosomes may be generally useful for species compar
isons. It will be interesting to examine the sequences of subtelom
e res from other plant species. Comments to: 
weck@ripo1.iaea.or.at · 

Figure 1. Telomere prlmer, CCCTAAACCCTAAACCCTAAACCCTA, top, and maize sub
telomere primer GAAATTGAGTCTCCCAACCATATC, bottom. L to R, marker (1 kb ladder, 
GIBCO-BRL), date palm, tel 37, tel KM, baselle (Congo flowering), baselle (Sri Lanka) , rice 
(IR43), banana (Burro Cemsa), banana (Burro Criollo), maize (Stock center-9098), maize 
(325C), and maize (M141 ); 58 C annealing temperature. 
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Canopy and yield enhancement per acre with dense populations 
--Galinat, WC 

Maximum yields per acre are obtained when the maximum 
amount of solar energy is captured by photosynthesis in the crop 
plant without significant amounts escaping down to the weeds and 
ground below. In dense stands of modern maize (30,000 or more 
plants per acre), there are so many partially overlapping leaves 
that little energy escapes and if the plant is adapted to cope with 
survival in high density populations, the yields may be enormous 
(Fig. 1 ). like humans adapted to city life by cultural evolution, the 

maize plant must become adapted to high density populations by 
its biological evolution through plant breeding. This has been 
achieved by an erection of short leaves so that direct rays of sun
shine may penetrate down about five leaves to the energy sink level 
of the ear. In addition, a reduction in tassel size conserves energy 
for use in kernel development and reduces the sun-shade effect of 
the tassel on the plant. In the sense of obtaining the maximum 
canopy per acre in contrast with maximum canopy per plant, the 
modern field corn hybrids have arrived, and breeding evolution 
continues in this direction, except for the subsistence farmers and 
specialty corns, including sweet corn, where all the great genetic 
diversity has been generated in the past. As the cheap high den
sity maize crowds out the low density maize of the past, we lose 

-the raw material for breeding. There is also a loss of the farmer
breeder culture associated with the indigenous maize. Despite 
nostalgia, there is no turning back cultural evolution. We are only 
mortal, but changes in culture and crops continue. 

Fig. 1 is a view from a car window on a trip from Des Moines to 
Ames, Iowa in August 1994. The density was about 30,000 plants 
per acre, when U.S. corn acreage was 60 million and total yield 10 
billion bushels. 

Evolutionary diversification in low density isolated gardens 
--Galinat, WC 

Maize evolved from teosinte and then diversified at low density 
in isolated gardens with individual plants and ears judged on their 
merits. At the time of maize introduction, each garden contained 
only a few isolated species, like being introduced into an island in 
the Galapagos Archipelago where it was free from competition 
with its own related kind and open to an adaptation into an ecosys
tem with the other inhabitants and with its new environment. 

Maize frequently found itself in association with beans and 
squash, with bean vines twisting up the maize stalks and squash 
vines spreading around to fill empty space related to large rocks 
and stumps (Fig. 2). The intercropping of maize, beans and 

squash with relatively few plants of each kind in small gardens is an 
extension of their natural ecosystem. The consequence in the 
thousands of isolated gardens located in diverse environments was 
an explosion of genetic diversity with over 300 distinct races of 
maize evolving by the time of Columbus. 

The direction of the diversification in an individual garden was 
in the eyes, hands and mind of the farmer-breeder in charge. He 
considered factors of beauty, utility and tradition, in contrast now 
with the industrial maize breeder, whose considerations are yield, 
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profit and market share. The industrial maize grows in an agricul
tural factory of machines, chemicals and computers. The raw ma
~erial to achieve industrial maize was generated by the old f ash
Ioned farmer breeder. Now that the raw material is endangered, 
the future is uncertain. 

Bl (Broadleaf), a genetic trait that may enhance yields by con
tributing to the canopy 

--Galinat, WC 

As an alternative to increasing yield per acre and solar energy 
capture by denser stands, attempts have been made to use canopy 
enh~ncement per plant at lower densities to increase yield. The 
dominant leafy gene (Lfy) suggested by Shaver increases the 
number of leaves above the ear from the normal of about 5 to 9 in 
Lfy. It has been widely tested and does not appear to always in
crease yield, at the densities tested. 

The answer to both canopy enhanc;ement and diversity supple
mentation may lie in the transfer of quantitative traits. The Bl 
(broad leaf) trait is one such complex factor that involves a clus
ter of genes representing the software regulating the course of 
sequential development during the flow of space-time. It may have 
signi!icant val_ue _in canopy and yield enhanceme11t per plant and 
possibly also In yield per acre, even at high density. It was discov
ered in some Choclero maize received from Victor Alamos Sr. of 
Jacques Seed Co., Santiago, Chile. Choclero is similar to the old 
Gourd Seed variety of the southeastern United States. Both have 
an umbrella canopy of wide leaf blades and broad husks enclosing a 
broad ear bearing 20 rows of shrunken kernels. The broad husks 
have added value as humita wrappers in Chile. Their counterparts 
in Mexico serve as tamale wrappers. More importantly the broad 
husks are associated on the same plant with broad leaf blades, al
though broad husks may have reduced blades, and leaves may have 
reduced sheaths and broad blades. This independence of sheath 
and blade appears to be due to regulation of targeting during de
velopment comparable to that of phase change from vegetative to 
flor~I. If the potential for fat meristem extends through the veg
etative and floral phases, programming may extend the broadness 
to the floral bracts and to the carpels of the pericarp, resulting in 
wide kernels. 

This developmental linkage must have evolved by means of fat 
enhancement- in meristem size evolving from primitive levels of 
skinniness in teosinte, the wild ancestor. Teosinte has small 
(skinny) apical meristems, narrow leaf sheaths and blades, all de
velopmentally linked together with slender two-ranked ears bear
ing ti~y kernels. 

Diversification of U.S. grain hybrids away from B73-Mo17 with 
some new hybrids derived from adapted exotic races 

--Galinat, WC 

If we are to be confined by the GEM (germplasm enhanced 
maize) objective of increasing diversity within the Northern Flint
Southern Dent pattern of heterosis by using Mo17 and B73 re
lated inbreds as the recurrent parents for introgressing unknown 
genes from their list, LAMP (Latin American Maize) alien 
germplasm, there are tactical problems. 

If we identified ahead of time what we are going to transfer 
we could do it and maintain the prescribed pattern of heterosis, 
especially now with the tool of biotechnology. But this would usu
ally involve just single gene transfers and not really increase the 
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diversity much in modern hybrid feed grain, in contrast to silage 
hybrids grown mostly for vegetal material and sometimes of di
verse tropical pedigrees. 

If the genetic diversity and different heterotic patterns rep
resented by certain obsolete races of gigantic maize still available 
in germplasm banks is adapted to modern agriculture and made 
competitive with B73-Mo17 related hybrids, the U.S. grain hy
brids will have gained the diversification that authorities claim we 
need to cope with sudden changes in the environment, including 
problems with water, weeds, insects and diseases. 
. The important proposal here is to adapt certain of the ungainly 

giant, now obsolete races of Latin American maize such as Jala, 
Oloton and Montana for use In modern U.S. maize agriculture by 
the transfer to them of a new semi-dwarf gene designated here as 
rd3. The rd (reduced) symbol is used because of rd3 similarity to 
the phenotype of rd1 and rd2 (peewee) genes discovered by Sin
gleton in C30 inbred sweet corn but non-allelic and not as potent. 
While rd1 reduces plant height to about 1/3 of normal, rd3 has a 
weaker reduction to only about 1/2 of normal. The rd3 gene ap
peared in a 10 foot tall line of Havel's Dent (JHLE) reducing the 
plant down to a reasonable height of 5 feet. The height reduction 
Is due to shorter Internodes at the base of the plant. During the 
early growth period of reduced elongation of internodes, root de
v~lopment is enhanced. This increased root development may pro
vide a degree of drought tolerance and even some Roundup herbi
cide tolerance. 

The rd3 gene does reduce leaf and tassel size, both of which 
help in adapting to high population densities. It may be helpful to 
also modify the tassel with the ub (unbranched) gene and then re
store some of the tassel with a recessive tassel ramosa, ra-D gene. 
The first maize, like its wild ancestor, teosinte of now and then, 
must have been adapted to high population competition. It should 
not be all that difficult to return this trait to any maize. 

Reversal of dominance and wild type during the origin of maize 
--Galinat, WC 
The wild type generally evolves dominance in order to maintain 

a high frequency for its phenotype despite the presence of a load 
of less adaptive mutations. Under domestication and/or a switch 
to a new environment, certain new phenotypes may be selected as 
the new wild type with the old phenotypes rejected. Selection for 
modifying genes that would enhance the expression of the new alle
les would give dominance to single dose expression, and, therefore, 
increase its phenotypic frequency. As the maize alleles had 
greater survival value under domestication than the teosinte alle
les, they acquired dominance over the millennia. The maize alleles in 
a teosinte and primitive maize background remained as recessive. 

The identity of the key maize-teosinte alleles by use of the 
traditional code of upper case for dominant genes and lower case 
for recessive genes in segregations from teosinte-modern maize 
hybrids can be difficult and of little value for studies of inheri
tance and evolution because of the mixed background of both wild 
and domestic modifiers of dominance. 

. In teosinte by primitive maize hybrids the teosinte alleles may 
still behave as dominants. This is the case with Rhee Flint, Coroico 
and possibly with Argentine popcorn. 



The symbolic identity of key trait alleles before and after a rever
sal of both dominance and wild type 

--Galinat, WC 

In analyzing the early stages on the origin of maize, one would 
use a teosinte background segregating the key trait alleles of 
maize that are symbolically coded to indicate the direction of di
vergence away from the wild type teosinte. These variants to
ward maize would be expected to be recessive and only much later 
to evolve a background where they could be expressed as domi
nants. When the background is relatively fixed, the frequency for 
a given phenotype may be scored under a modified type of symbol 
with a sub-postscript of t for teosinte or m for maize represent
ing the background of dominance modifiers relative to the ob
served phenotype within the segregation as in Table 1. 

Table 1. The genetic symbols for teosinte-maize key traits indicating dominance and wild type 
reversal. 

Background Variant Direction 
genome Chromosome Phenotype Description 

maire teosinte location 

maize + [Ir. 2 Teosinte 1wo-JilW!I ear 
teosinte Ik.. + 2 Maire mulli-Wllll:!I ear 

maize + Im 3 Tassel wit•ces Utll)C[ spike 
teosinte lnl... + 3 F.ar ~ spike 

maize + Rd. 3 Tto1inte ~ femal<;.splkolcl 
teosinle i!d... + 3 M•b.c lWJJ;II female ,plkclc! 

maire + .l&lk 4 Teosinte 1h1msi mbiU:&IMi:t 
teosinte .l&a.. + 4 Mair.e 1l1.1ma-aD:b\l~lum 

WUHAN, CHINA 
Huazhong Agricultural University 

Mapping cms-S restorer gene Rf3 with RFLPs and RAPDs 
--Shi, VG; Zheng, YL; Li, JS and Liu, JL 

Symbol 
synonym 

(I[) 
(DI[) 

(lni) 
<mn&) 

(ml) 
(ml) 

(la) 
(mp) 

The use of the ems inbred line as a female parent to produce 
maize hybrids is a cost-competitive and satisfactory technique 
since manual detasseling is eliminated. Three types of male-sterile 
cytoplasms in maize, designated as T, C and S, have been classified 
by specific nuclear genes that suppress the male-sterility effects 
of these cytoplasms and restore pollen fertility. S-cytoplasm is 
conditioned by interaction of the cytoplasm with a single nuclear 
gene and fertility is restored by a dominant nuclear gene (Rf3) lo
cated on the long arm of chromosome 2. It is probably a long term 
objective to clone the restorer gene (Rf3) to help us understand 
its function and the mechanism of fertility restoration. However, 
as the first step of map-based gene cloning, it is a prerequisite to 
construct a saturated genetic map of rf3 with more closely linked 
molecular markers. 

To map the rf3 gene, a backcross, (Mo17cms-S rf3 rf3 x 
HZ1N Rf3 Rf3) x Mo17 N rf3 rf3, was used as the mapping 
population. Two DNA bulks were constructed from each 
corresponding to the 20 male-sterile and fertile individuals from 
this segregating population. Bulked segregant analysis (BSA) 

4.8 

2.7 

10.0 

umc49 

rf3 

RAPDE0B-1.2kb 

umc36a 

Figure 1. Region of maize chromosome 2 in the vicinity of rf3. Positions are shown lot flanking 
RFLP markers (umc49 and umc36a) and one RAPD markers, with map distances in cM. 

Figure 2. Southern analysis of H/ndlll-dlgested DNA hybridized with umc36a. (Right to left) 
DNAs from male-fertile Individuals ( Rf3 ff3). Lane 4 from right shows a recombinant. 

Figure 3. RAPD data for OPE0B. (Right to left) Lane 1: Mo17cms-S rf3 rl3 (parent 1); lanes 
2 and 4: male-sterile bulk ( rl3 rl3); lane 3: male fertile bulk (Rf3 rl3); lane 5: HZ1 N Rf3 Rf3 
(parent 2); lane 6: 1 OObp ladder; remaining lanes: male-sterile Individuals. Lane 9 from right 
shows a recombinant. The arrow shows the male-fertile specilic RAPD fragment. 
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was employed to identify RFLP and RAPD markers linked to the 
restorer gene (Rf3). For RFLP analysis, umc36a/Hindlll and 
umc49/ Pstl were found to cosegregate with the rf3 allele 
through screening 36 probe/enzyme combinations. Furthermore, 
132 random individuals from the segregating population were 
analyzed to calculate linkage distance. Analysis of the data with 
JOINMAP reveals that umc36a and umc49 flank rf3 and are 
separated from rf3 by 4.8 cM and 12.7 cM, respectively (Figs. 1, 
2). For RAPD analysis, 340 arbitrary 10-mer oligonucleotide 
primers were screened on the two paired bulks. Three primers, 
E08, M02 and 012 were found to produce one polymorphic DNA 
fragment between bulks in each case associated with the restorer 
allele (Fig. 3). To determine the map location of the loci 
represented by the 1.2kb E08 band, 17 4 individuals from the 
mapping population were taken as templates to be amplified with 
primer E08. Figure 1 shows the location of this RAPD allele 
relative to rf3 and the flanking RFLP markers. The E08 locus lies 
2. 7 cM from rf3 beyond umc36a. This specific RAPD E08-1.2kb 
fragment was extracted from the gel and then cloned in the 
pBluescript SK {M13-) vector. Correct inserts were released by 
digesting the recombinant plasmid and eventually used as a probe 
to hybridize with DNA blots. The preliminary result suggests 

a b 

d 

that the amplified fragment should be a medium repetitive copy. 
The work of searching for different types of molecular mark

ers (RAPD, RFLP, AFLP, STS and SCARs) to saturate the ge
netic region near the rf3 locus continues. When the saturated ge
netic map is established, it will enable us to apply these markers 
either in marker-assisted breeding programs or in genome walking 
strategies. 

WUHAN, CHINA 
Wuhan University 

SimuHaneous chromosome G-banding and in situ hybridization of 
RFLP markers in maize 

--Song, Y; Ren, N; Mao, N; and Liu, L 

The technique of simultaneous G-banding and in situ hy
bridization (ISH) has been developed in plants for the first time. 
Using this technique with RFLP markers, umc58 was localized onto 
1 L3 (chromosome 1, long arm, the third band from the centromere 
to the end of the arm), 5L5 and 9L6; and umc65 was localized onto 
6L1 and 8L7. II was shown that umc58 and umc65 hybridize to 
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Figure 1. The mitotic chromosomes showing hybridization sttes of the tested probes. In all the figures the small arrow denotes the hybridization site and the large arrow denotes the centrome re. ( a) 
Late prophase chromosomes showing a site with probe umc58 at 1L3. (b) Late prophase chromosomes showing a site with probe umc58 at 5L5. (c) Late prophase chromosomes showing a site 
with probe umc58 at 9L6. (d) Eariy metaphase chromosomes showing a site with probe umc65 at 6L 1. (e) Eariy metaphase chromosomes showing a site with probe umc65 at BL7. 
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triplicated and duplicated sequences respectively (Figs. 1 and 2). 
These two markers separately showed hybridization sites near the 
centromere of the long arm in chromosomes 1 and 6, corresponding 
basically to their sites in the genetic map. It was deduced that 
umc58 probably was near Helminthosporium carbonum susceptibil
ity genes (hm 1 and hm2), as hybridization sites of umc58 in chro
mosomes 1 and 9 are those at which the genes localize. 
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Figure 2. G-banded idiograms showing the physical location of the RFLP markers. The top nu
meral is the number of the chromosome. (a) G-banded idiogram of chromosomes 1, 5 and 9 
showing sites with probe umc58 at 1 L3, 5L5 and 9L6 respectively. (b) G-banded idiogram of 
chromosomes 6 and 8 showing sites with probe umc65 at 6L 1 and 8L7 respectively. 

ZEMUN-BELGRADE, YUGOSLAVIA 
Maize Research Institute 

Embryo salt soluble proteins as markers in research on the 
biological background of heterotic gene expression 

--Drinic, SM; Coric, T and Konstantinov, K 

A better understanding of the biochemical basis of heterotic 
gene expression could enhance the breeder's ability to form new 
maize genotypes expressing "permanent" heterosis. Several ge
netic models for the explanation of hybrid vigor in Mendelian terms 
have been suggested, including the dominance and overdominance 
hypotheses. The dominance hypothesis attributes the increased 
vigor of heterozygosity to dominant alleles and in principle should 
be fixable by inbreeding. The overdominance hypothesis assumes 
that there exist relatively rare loci at which the heterozygote is 
superior to either homozygote but heterosis due to overdominance 
or pseudo-overdominance and is not fixable by inbreeding. There 
are also results providing clear evidence for the role of epistasis 
(Russell and Eberhart, Crop Sci 10:165-169, 1970), and also indi-

cations that additive genetic effects are primarily responsible for 
the increase of heterosis through 5 cycles of maize selection and 
population crosses (Walejko and Russell, Crop Sci 17:647-651, 
1977). 

Maize hybrid plants expressing heterotic vigor develop from 
embryos consisting of 2n chromosomes which have not changed by 
the process of genetic recombination. Parameters derived from 
hybrid embryo genome expression could provide more information 
on the relationships between genome expression of parental lines 
per se and hybrid genome expression as a consequence of inbred 
line combinations. Salt soluble proteins, fractions of metabolically 
active albumin and globulin proteins, are good candidates for such 
studies. 

A diallel set of five inbred lines, F2, ZPL 120, ZPL203, W401 
and EP1, excluding reciprocal crosses, has been studied at two 
locations, in a random block system experiment with 4 replications. 
Results on the heterotic effect on grain yield and soluble protein 
content of 10 developed F1 hybrids are presented in Table 1. 

Table 1. Heterotic effect on the grain yield and soluble protein content in the embryo of all de
veloped hybrid combinations, and index of similarity of inbred lines. 

Heterosis (%) 
Hybrid combination grain yield salt soluble proteins 

-3 
index of similarity 

10 1¥9 fresh weight 
ZPL 120 x W401 139.43" 8.28 79.2 
W401 x EP1 134.30" 4.14 83.3 
ZPL120x EP1 110.52" 6.44 85.7 
F2 x ZPL 120 109.39" 3.44 85.2 
ZPL 120 x ZPL203 90.97" 4.52 86.3 
ZPL203 x EP1 90.34" 0.96 85.2 
ZPL203 x W401 88.48" 3.34 86.8 
F2x EP1 87.36" 0.65 87.7 
F2 x W401 67.22" -0.63 88.5 
F2 x ZPL203 51.96" 0.42 88.0 

" significant at the level of 0.01 

In all hybrid combinations significant positive heterosis was ob
tained for grain yield. Low but positive heterotic effect on the 
salt soluble protein content in embryo tissue has been obtained in 9 
out of 1 O hybrids. In order to correlate grain yield heterosis and 
salt soluble proteins in embryo tissue several hybrid combinations 
were selected for high resolution polyacrylamide gel elec
trophoresis (PAGE) of embryo salt soluble proteins: two hybrids 
expressing high heterosis for grain yield and two hybrids express
ing low heterosis for grain yield. In both groups, hybrids have one 
inbred line as a common parent. Electrophoregrams are presented 
in Figures 1 and 2, respectively. In the hybrid combinations ex
pressing the highest heterosis for grain yield and salt soluble pro
tein content (F2 x ZPL 120; ZPL120 x W401) 3 hybrid-specific 
protein bands are identified (arrows in Fig. 1 ). Several male or 
female inbred-specific protein bands have also been identified 
amongst the many in common for both parents. 

On the electrophoregrams of salt soluble proteins isolated 
from the embryo tissue of low heterotic hybrid combinations, pre
sented in Figure 2, only one hybrid specific protein band has been 
identified (arrow). 

By comparing electrophoregrams of hybrid combinations (F2 x 
ZPL 120 and ZPL 120 x W401; F2 x ZPL203 and F2 x W401) and 
coelectrophoregrams (F2 + ZPL 120 and ZPL 120 + W401; F2 + 
ZPL203 and F2 + W401) of parental lines it could be suggested 
that non-additive genetic effects are responsible for salt soluble 
protein synthesis in hybrid embryo tissue (Leonardy et al., TAG 
82:552-560, 1992). 
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Figure 1. Elec1rophoregrams of embryo salt soluble proteins ol two hybrids expressing high 
heterosls for grain yield: line 1 (F2); llne 2 (ZPL120); line 3 (F2 x ZPL120); line 4 (F2 + 
ZPL 120); line 5 (ZPL 120); line 6 (W401 ); line 7 (ZPL 120 x W401 ); line 8 (ZPL 120 + W401 ). 

M 2 3 4 5 6 7 8 

Figure 2. Electrophoregrams ol embryo salt soluble proteins ol two hybrids expressing low 
heterosis for grain yield: line 1 (F2); line 2 (ZPL203); line 3 (F2 x ZPL203); line 4 (F2 + ZPL203); 
line 5 (F2); line 6 (W401); line 7 (F2 x W401); line 8 (F2 + W401). 

Based on the number of protein bands, their distribution ac
cording to the molecular weight, and presence or absence, the in
dex of similarity of parent lines in hybrid combinations has been 
calculated and is presented in Table 1. Comparing heterosis for 
grain yield and protein content with index of similarity of inbred 
lines it could be suggested that inbreds with the lowest level of 
salt soluble protein similarity expressed the highest heterosis 
both for grain yield and content of salt soluble protein in embryo 
tissue. 

The above data indicate that there is hybrid specific expres
sion of certain loci in maize embryo tissue, and further biochemical 
experiments (i.e. isolation of poly A-mRNA specific for the pro
tein bands synthesized only in hybrid combinations) for a better 
understanding of the molecular basis of heterosis are in progress. 
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F1 embryo proteins as valuable tools in better understanding of 
heterosis 

--Konstantinov, K; Coric, T; Drinic, G and Drinic, SM 

The creation of new and more productive maize hybrids has as 
a prerequisite inbred lines possessing both general and specific 
combining ability, determined almost entirely through studies at 
the phenotypic morphological level. In a companion paper are re
ported results on the presence of more hybrid-embryo specific 
proteins in higher as compared to lower yielding crosses. 

This study is focused on parental lines participating in genome 
expression in the F1 maize embryo at the level of total and salt sol
uble proteins. Total and salt soluble proteins were analyzed in em
bryo tissue of seven single cross hybrids produced by crossing one 
inbred used as the female parent and seven inbreds used as the 
male parents. In this way it was expected to distinguish the spe
cific contribution of each inbred line genome in genetic control of 
protein synthesis. 

M 1 2 3 4 5 6 7 

Figure 1. Electrophoregram of total proteins isolated from the maize dry embryo of different 
crosses: line 1 (ZPL153 x ZPL218); line 2 (ZPL153 X ZPL.212): line 3 (ZPL153 x ZPL.212); line 
4 (ZPL153 x ZPL17); line 5 (ZPL153 x ZPL59G); line 6 (ZPL153 x ZPL655); line7 (ZPL153 x 
ZPL573). 

M123 45 67 

Figure 2. Electrophoregram of salt soluble proteins isolated from the maize dry embryo ol 
different crosses. Legend is the same as in Figure 1. 

A high resolution polyacrylamide gel electrophoresis (PAGE) 
system (Wang et al., Seed Sci. Technol. 22:51-57, 1994) was 



used for protein separation according to molecular weight. Elec
trophoregrams of total F1 embryo proteins are presented in Fig
ure 1 and salt soluble proteins in Figure 2. 

Both quantitative and qualitative differences between ana
lyzed crosses are obvious. Protein fractions which are candidates 
as markers associated with heterotic effect are indicated by ar
rows. 

Parallel studies of embryo specific proteins and polyA-mRNAs 
of parental lines and hybrid combinations during kernel develop
ment after pollination are in progress. Specific frac
tion/fractions of protein/proteins synthesized only in particular 
hybrid combinations could be used as a tool for identification and 
characterization of the encoded gene/genes important in manifes
tation of heterotic vigor. 

.. 
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Weber, Gard; lnslilut fur Pflanzenzuchlung; Universllat Hohenheim; D 70593 Stultgarl; GERMANY; 49 (711)459 2341; Fax: 49 (711)459 2343; weberg@rs1.rz.uni-

hohenheim.de 
Weck, Edward A.; IAEA; POB 100; 1400 Vienna; AUSTRIA; 43•1-2060-21626; Fax: 43-1-20607; weck@ripo1.iaea.or.at 
Well, Cliff; Dept. of Biological Sciences; University of Idaho; Moscow ID 83843; (208)885-6370; Fax: (208)885-7905; cwell@crow.csrv.uidaho.edu 
Wen, Tsui-Jung; B422 Agronomy Hall; Iowa Stale University; Ames IA 50011; 515-294-1659; Fax: 515-294-2299; TJWEN@IASTATE.EDU 
Wendel, Jonathan F.; Department of Botany; Bessey Hall; Iowa State University; Ames IA 50011; 515-294-7172; Fax: 515-294-1337; jlw@iastate.edu 
Wenxlong, Un; Fujian Agricullural College; Dept. of Agronomy; Jingsh;m, Fuzhou; Fu]lan 350002; CHINA 
Warr, Wolfgang; lnslllut Fur Enlwicklungsb1ologie; Universitat zu Kain; Gyrhofstr 17; 50931 Koln 41; GERMANY; +49 221 470 2619; Fax: +49 221 470 5164; 

Wower@Gen1.Genetlk.Unl-Koeln.de 
Wessells, Catherine P. 8.; 28015 Stonehenge Lane; Eugene OR 97402; (503)344-3290 
Wessler, Sue; University al Georgia; Dept of Genetics; Ule Sciences Bldg; Athens GA 30602; 706-542-1870; Fax: 706-542-3910 
Wes!, Dennis R.; Dept Plant and Soll Sci; Univ of Tennessee; Knoxville TN 37901-1071; 423-974-8826; Fax: 423-974-7997; DWEST@UTK.EDU 
Weslhoff, Peter; Ins. Ent. Mel. Bio. Pllanzen; Heinrich-Heine-Univ Ousseldorf; D-40226 Dusseldorl ; GERMANY; 49-211-311-2338; Fox; 49-222-311-4871; West@Uni-

Duesseldorf.de 
Wetzel, Carolyn; Depl or Bolany; Bessey Hall; Ames IA 50011; 515-294-7724; Fax: 515-294-1337; cmwetzel@iastate.edu 
Whalen, R. H.; Dept of Biology; South Dakota State Univ; Brookings SD 57007; 605-688-4553 
While, Shawn; Dept of Botany; University of Georgia; Athens GA 30602; (706)542-1857; Fax: (706)542-1805; whites@bscr.uga.edu 
Whltwood, W.; Robson Seed Farms; 1 Seneca Circle; Hall NY 14463; 716·526-5879 
Wldholm, Jack M.; Crop Science; Univ of lllfnols; PABL, 1201 W. Gregory; Urbana IL 61801; 217-333-9462; Fax: 217-333-4777; Widholm@UIUC.EDU 
Wldstrom, Nell W.; Coastal Plain Exp Sta; PO Box 748; Tifton GA 31793; 912-387-2341; Fax: 912-387-2321; nwldstro@tifton.cpes.peachnet.edu 
Wienand, Udo; Inst. Allge. Bot.; Angew. Molek .. ; Pllanzen, AMP I, Ohnhorslstrasse 18; 0-22609 Hamburg; GERMANY; (49)40 822 82 501; Fax: (49)40 882 82 503; 

FBSA 114@RRZ-CIP-1.RRZ.UNI-HAMBURG.DE 
Wilkes, H. Garrison; Biology-College II; Univ of Mass/Boston; 100 Morrissey Blvd; Boston MA 02125-3393; 617-287-6600; Fax: 617-287-6650; 

WILKES@UMBSKY.CC.UMB.EDU 
Willcox, Martha; CIMMYT; Aparlado Postal 6-641; Mexico, D.F. 06600; MEXICO; 52(5)726·9091 exl.1128; Fax: 52(5)726-7559; MWillcox@CIMMYT.MX 
Williams, Rosalind; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Ber1<eley CA 94720 
Williams, Terrill E.; Pioneer HI-Bred lnlernaU; P.O. Box 128; New Holland PA 17557; 717-354·6044; Fax: 717-355-2445; Willlamste@phibred.com 
Williams, W. Paul; Crop Sci Res Lab; PO Box 9555; Miss. State MS 39762; 601-325-2735; Fax: 601-325-8441 
Williams, Claire G.; Texas A&M Univ; Dept of Forest Sdence; College Station TX 77843-2135; 409-845-6049; Fax: 409-862-3745; claire_wjlliams@tamu.edu 
Williams, Marl(; DuPont de Nemours & Co Agrlc Biotech; Stine-Haskell Res Cent 210N/253; 1090 Elkton Rd; Newark DE 19714; 302-366-5102; Fax: 302-451-4832; 

WILLIAME@ESV AX.ON ET .DUPONT .COM 
Williams, Rober! E.; PO Box 294; Pittsfield IL 62363; 217-285-2530 
Willman, Mark R.; Hunl-Wesson Inc; 463 U.S. Hwy. 30 East; Valparaiso IN 46383; 219/477-2233; Fax: 219/477-2232 
Wing, Rod; Oeparlment of Soll and Crop Sciences; Texas A&M University; College Station TX 77843;; rodwing@tamvm1.tamu.edu 
Winkler, Rodney G.; University of Arizona; Plant Science (C795424); Forbes Bldg Rm 303; Tucson AZ 85721; 602-621-9567; Fax: 602-621-7186; 

RWINKLER@AG.ARIZONA.edu 
Winter-Vann, Ann Marie; CIBA Ag Biotech; PO Box 12257; Research Triangle Park NC 27709-2257 
Wise, Roger; USDA-ARS; Dept. Plant Pathology; Iowa Slate Univ.; Ames IA 50011-1020; 515-294-9756; Fax: 515-294-9420; rpwlse@lastate.edu 
Wolfe, Kenneth; Dept. of Genetics; University of Dublin; Trinity College; Dublin 2; IRELAND; 353-1-702-1253; Fax: 353·1-679-8558; KHWOLFE@VAX1.TCD.IE 
Woo, Claudine; 2667 Parker St; Berkeley CA 94704 
Woodman, Wendy; Dept. of Agronomy; Iowa State Univ.; Ames IA 50011; 515·294-3635; Fax: 515-294-3163; wlwoodn,a@iastale.edu 
Woodruff, Dorde; 6366 Cobblerock Lane; Salt Lake City UT 84121-2304; 801-277-5526 
Woodward, Wendy; Biol Sci; Tucker Hall; Univ of Missouri; Columbia MO 65211 
Woody, Laura; Biol Sci; 110 Tucker Hall; Univ of Mlssouri;Columbia MO 65211 
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Wright, James; Pioneer Hi-Bred Internal Inc; PO Box 245; ; Wilson NC 27894-0245 
Wright, Allen; ExSeed Genetics L.L.C.; 1573 Food Science Bldg.; Iowa Stale University; Ames IA 50011; (515)294-8395; Fax: (515)294-9359 
Wright, S.; Linkage Genetics; 1515 West 2200 South, Suite C; Sall Lake City UT 84119; (801) 975-1188; Fax: (801)975-1244 
Wrobel, Russell; Box 7612; Dept. of Botany; North Carolina State University; Raleigh NC 27695-7612; ; qwerty@unity.NCSU.edu 
Wurtzel, Eleanore; Dept Biol Sci; Davis Hall, Lehman Collegei City Univ New Yori<; Bronx NY 10468; 718-960-4994, -8643; Fax: 718-960-8236; etwlc@cunyvm.cuny.edu 
Xia, Zhen-Ao; Academia Sinlca; Shanghai Inst. of Plant Physiol.: 300 Fonglln Road; Shanghai 200433; CHINA 
Xia, YIJI; 8420 Agronomy Hall; Iowa State Univ; Ames IA 50011 
Xiao, Yongli; 2292-1 Molecular Biology Bid~; Iowa Slate University; Ames IA 50010; 515-294-3277; yxlao@lastate.edu 
Xie, You-Ju; College of Biology; China Agncultural Untverstty; Beijing 100094; CHINA; 86 (10) 62631895; Fax: 0086-1-2582332 
Xiong, Chenmln; China National Rice Research Institute; Tl Yu Chang Road 171; Hangzhou; Zhejiang 310006; CHINA 
Xu, Yun-Bl; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zhejiang 310029; CHINA 
Xu, Zhi•Hong; Shanghal Inst. of Plant Physlol.; 300 Fengtln road; Shanghai 200032; CHINA 
Xu, Zeng-Fu:-ztiongsan Univ.; Biotechnology Res. Center; 135 West Xlngang Rosel, Guangzhou; Guangdong 510275; CHINA 
Xu, Xlaojie; 8420 Agronomy Hall; Iowa State Univ; Ames IA 50011 
Xu, Gullln; Agronomy Dept.; 302 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2033 
Xu, Wenwel; Plant Molecular Genetics Laboratory; Mall Stop 2122; Texas Tech Univesity; Lubbock TX 79409; (806)742-2831; Fax: (806)742-0775; 

BWWXU@TTACS1 .TIU.EDU 
Yaklin, Paul; Pioneer HI-Bred Internal Inc; Trail & Technol Devel; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004 
Yamada, Minoru; STAFF; Sankaiclo Bldg. 7F; Akasaka 1-9-13, Minalo-ku; Tokyo 107; JAPAN; (03)3586-8644; Fax: (03)3586-8277 
Yamaguchi, Judy; Plant Gene Expression Center; USDA-AR$; 800 Buchanan SI; Albany CA 94710 
Yamato, Tom; Biol Sci; 324 Tucker Hall; Univ of Missouri; Columbia MO 65211 
Yang, Jin Shui; Fudan University; Institute of Genetics; Shanghai 200433; CHINA 
Yang, Yuesheng; Soulh China Agricultural University; Experimental Center; Guangzhou; Guangdong 510642; CHINA 
Yang, Ren-Cui; Fujian Agricultural College; Heterosls Utilization Lab.; Chinmen, Fuzhou; Fujian 350002; CHINA 
Yang, Hong; Chinese Academy of Agric. Sciences; Biotech. Research Centre; Beijing 100081; CHINA 
Yano, Masahiro; Alce Genome Research Program; Nat. Inst. Agroblol. Resources; 2-1-2, Kannondai; Tsukuba, lbaraki 305; JAPAN; 81-298-38-7441,2199; Fax: 81-298-38-

7468,2302; myano@abr.affrc.go.jp 
Yatou, Osamu; Crop Science Division; Kagoshima Agrlcullural Experiment Station; 5500 Kamifukumoto-cho; Kagoshima, 891 - 01; JAPAN; +81-992-68-3231; Fax: +81 • 

992-68-9268; GFE01254@NIFTYSEAVE.OR.JP 
Ye, Sheng-Yu; Shanghai Inst. of Biochem.; 320 Yue Yang Road; Shanghai 200031; CHINA 
Ye, Ke-Nan; Zhongsan Universitv; Biotechnology Research Centre; Guangzhou 510642; CHINA 
YI, Bu-Young; Nat Agric Sci & Technol Inst; RDA; SEO DUN DONG 249· Suwon 441-707; KOREA; 82-331-296-9436; Fax: 82-331-294-1072 
Yoder, John; Dept of Vegetable Crops; Univ of Cslifomla, Davis; Davis CA 95616; 916-752-1741; Fax: 916-752-9659; JIYODER@UCDAVIS.EDU 
Yoganathan, Arulmolee; Department of Biology; Lehman College/CUNY; Bedford Park Blvd. West; Bronx NY 10468; 212-960-8235; Fax: 212-960-8227 
Yong, Gao; Llaonlng Academy of Agric. Sciences; Rice Research Institute; Sujlalun; Shenyang 110101; CHINA 
Yoon, Elizabeth; Dept Bot Pfant Path; Oregon S1ale Univ; Gordley 2082; Corvallis OR 97331-2902 
You, Chong-blao; Chinese Academy of Agric. Sciences; IAAE, Dept. of Biotechnology; P.O. Box 5109; Beijing 100094; CHINA 
Young, Todd; Botany Dept; UC Riverside; Riverside CA 92521-0129 
Yu, Li; China Nallonal Rice Research Institute; library; Tlyuchang Road No. 171, Hangzhou; Zhejiang 310006; CHINA 
Yu, Dl-qlu; Zhongsan(Sun Yat-Sen)Universll}'; Biotechnology Researct1 Center; Guangzhou; Guangdong 510275; CHINA 
Yu, Jia; Dept. Bfolog,cal Science; Lehman College; 250 Bedford Park Blvd. West; Bronx NY 10468; 212-960-4994; Fax: 212-960·8227 
Yu, Yuhua; Souh China Inst. Bo!.; Academia Slnlca; Guangzhou_510650; CHINA 
Yu, Yong Gang; CSES VPI & SU; Blacksburg VA 24061-0404; (703)231-3701; YGYU@VTVM1.CC.VT.EDU 
Zabala, Gracia; Plant Biol/265 Morrill Hall; Univ Illinois; 505 S. Goodwin Avenue; Urbana IL 61801; 217-333-3736; Fax: 217-244-7246; Gracia.Zabala@Qms1.Life.uiuc.edu 
Zaitlin, David; 4112 Yuma Drive; Madison WI 53711, 510-729-0720; Fax: 510-562-9215 
Zavallshlna, Alexandra; Genetics Dept; Saratov State University; 83, Astrakhanskaya St.; 410071, Saratov; RUSSIA; ; Fax: 845-2-240446; 

POSTMASTER@SCNIT .SARATOV .SU 
Zehr, Brent; Purdue University; Dept of Agronomy; LIily Hall of Life Sciences; West Lafayette IN 47907-1150; (317)494-8088; Fax: (317)494-6508; 

bzehr@dept.agry.purdue.edu 
Zeng, Zhaomel; Washington University; Dept. of Biology; Campus Box 1137; St. Louis MO 63130; 314-935-6826 
Zeng, M. a.; Institute of Genetics; Academia Slnica; Datun Rd.; 100101 Beijing; CHINA; 4917283; Fax: (001 861)4914896 
Zhang, Dayu; Jiangsu Academy of A9rlcultural Sci.; Inst. of Genet. and Physlol.; Nanjing 210014; CHINA 
Zhang, Gul-Quang; South China Agncultural University; Dept. of Agronomy; Guangzhou 510642; CHINA 
Zti. ·ang, Jianbo; 2288 Molecular Biology Building; Iowa Stale University; Ames IA 50010; (515)294•2922; Jzhang@iastate.edu 
Zhang, Pallan; 2288 Molecular Biology Bldg; Iowa St11te University; Amas IA 50011; 515-294-2922; zpf@lastate.edu 
Zhang, Fan; Department of Botany; Box 7612; NCSU; Raleigh NC 27695-7612;; Fax: 919-515-3570; Fan_Zhang@ncsu.edu _ 
Zhang, Olla; Huazhong Agricultural University; Biotechnology Center; Shlzishan, Wuchang; Hubel 430070; CHINA; 86-27-7816734; Fax: 86-27-7815057 
Zhao, Qiquan; Zhejiang Agricullural University; Dept. of Tea Science; Hangzhou; Zhejiang 32100; CHINA 
Zhao, Zuo-Yu; Bioteclmology Research; Pioneer Hi-Bred Int'!; 7300 NW 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3644; Fax: 515-270-3444; 

zhaoz@phibred.com 
Zhen; Zhu; Academia Sinlca; Institute of Genetics; Beijing 100101; CHINA 
Zheng, Kangle; China National Rice Research lnslitule; 171 Tl Yu Chang Road; Hangzhou 310006; CHINA 
Zhixian, Liu; 11 Sangyuan Road; Maize Research Inst; Shandong Academy of Agri. Science; Jinan, 250100; CHINA; (0531)8963721-313; Fax: (0531)862303 
Zhong, Zhen-Ping; Fujlan Agricultural College; Dept. of AgronornY.: Fuzhou; Fu/'ian 350002; CHINA 
Zhou, Kalda; Sichuan Agricultural University; Rice Research lnsl1tule; Yaan; S chuan 625014; CHINA 
Zhou, Zhaolan; Chinese Academy of Sciences; lnslilute of Genetics; Group 601; Beijing 100101; CHINA 
Zhou, LI; Dept Malec Biol; Wellman 11, MGH; Boston MA 02114; 617-726-5916; Fax: 617-726-6893; zhou@frodo.mgh.harvard.ec1u 
Zhou, Hongsheng; Institute of Crop Breeding and Cultiv; Chinese Acad Agr!c Sci; 30, Bai Shi Qlao Lu; Beijing 100081; CHINA; 86· 1-8351731; Fax: 86-1-8316545 
Zhu, LI-Hong; Nanjing Agric. Universlly; Dept. of Agronomy; Nanjing; Jlangsu 210014; CHINA 
Zhu, Z. P.; Shanghai Inst. of Plant Physiol.; 300 Fengllng Road; Shanghai 200032; CHINA 
Zhu, Ying-Guo; Wuhan University; Genellcs Dept; Wuchang; Hubel 430072; CHINA; 27-7822712-4560; Fax: 27-7812661 
Zhu,.LJ•huang; Academia Sinica; lnslilule of Genetics; Datun Road, Andlngmen Wai; Beijing 100101; CHINA: 86-1-2033491; Fax: 86-1-4913428 
Zhu, Xl11oyang; Curtis Hall; University of Missouri; Colurnbla MO 65211 
Zimmer, Elizabeth; lab of Molecular Syslemallcs MAC 534; Support Ctr. Nat'! Museum Nat. History; Smithsonian Ins!; Washington DC 20560; 301-238-3025; Fax: 301-

238-3059; zlmmer@onyx.sl.eclu 
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IV. MAIZE GENETICS COOPERATION STOCK CENTER 

USDA/ARS/MWA - Plant Physiology and Genetics Research Unit 
& 

University of Illinois at Urbana/Champaign - Department of Crop Sciences 

S-123 Turner Hall 
1102 South Goodwin Avenue 

Urbana, IL 61801-4798 

(217) 333-6631 [phone] 
(217) 333-6064 [fax] 
maize@uiuc.edu [interne~ 
http://www.uiuc.edu/ph/www/maize [URL] 

. During 1995, 2012 seed samples have been supplied in response to 264 requests. Of these, a total of 60 requests were received from 
20 foreign countries. Approximately two thirds of our requests were received by electronic mail or through our order form on the World
Wide Web. 

Spring rains caused a delay of planting and then soil crusting; this was followed by a very hot and dry summer followed by an early 
killing frost. In addition to this, our plants' root systems were compromised by rootworms. About 5 acres of nursery were grown. 
Despite the weather and pests, and with the help of irrigation, good increases were obtained of numerous stocks that were in low supply 
and new stocks from the collections of Marcus Rhoades, Donald Robertson, Ed Coe, Hugo Dooner, Barbara McClintock, Jerry Neuffer, and 
Nina Fedoroff. Special-plantings were made of several categories of stocks, with special attention given to the collection of reciprocal 
translocations developed by A. E. Longley and E. G. Anderson. Some tests for allelism were made within groups of mutants of similar 
phenotype. We had a spotty winter nursery at the USDA facility in lsabela, Puerto Rico last year due to a problem with the soil. However, 
soil tests did not reveal any specific toxicity or deficiency. Our winter crop in Puerto Rico looks excellent this year, so far. 

We have obtained additional stocks from the collections of Jerry Neuffer, Ed Coe, Jerry Kermicle, Kevin Simcox, Donald Robertson, 
William R. Findley, Karen Cone, Robert Brawn, and John Laughnan. Through the help of Rob Martienssen and Paul Chomet, we obtained 
stocks from the collection of Barbara McClintock. We selected mutant stocks from McClintock's collection that we will maintain, the rest 
were sent to NSSL for archival purposes. We have pedigree information in electronic form for McClintock's stocks. This and information 
about other donated collections is available at URL: <ftp://ftp.agron.missouri.edu/pub/mgcsc/>. We expect to receive several additional 
large accessions of stocks from maize geneticists within the upcoming year. We strongly urge all cooperators with mutants (old or new) 
that are not presently in our collection, to contribute seeds to us. This will insure that mutants you have will be maintained and shared with 
the maize research community. 

We set up a WWW home page in March of 1995 that allows us to receive requests over the 'Web' from users with software such as 
Mosaic or Netscape. We are continuing to enter data into our internal database. In addition to information about our stocks, we also have 
the reprint collections of M. M. Rhoades, G. F. Sprague and E. G. Anderson. Information about these reprints is accessible from our 
growing internal database. · 

We have been continuing our collaboration with Ed Coe's efforts in the growing Maize Genome Database (MaizeDB). This is part of the 
Plant Genome Database (PGD) effort being sponsored by the National Agricultural Library. Information about our stocks is presently in 
MaizeDB (and therefore also with the PGD at NAL) allowing users access to information about available maize genetic stocks. Available 
maize genetic stocks have also been listed in GRIN (with links to detailed information contained in MaizeDB and PGD). Stock information 
is accessible from our web site. 

A list of available stocks will continue to be published annually as part of the Maize Genetics Cooperation • Newsletter. This year the 
stock list has many new additions. When making requests please give both the stock number and the genotype. 

Marty Sachs 
Director 

Philip Stinard 
Curator 

Janet Day Jackson 
Research Specialist 
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CHROMOSOME 1 

101A sr1 zb4 P1-ww 
1018 sr1 P1-wr 
101C sr1 P1-ww 
101D sr1 P1+rr 
101F sr1 1s2 P1+rr 
102F ms28 
103D vp5 
103DA vp5-mu3076 
103D8 vp5-86GN4 
103DC vp5-86GN3 
103DD vp5-86GN6 
103DE vp5-86GN11 
103DF vp5-Mumm#1 
103E zb4 ms17 P1-ww 
105A zb4 P1-ww 
1058 zb4 P1-wr 
105C zb4 P1-ww br1 
105E ms17 P1-wr 
105F ms17 P1-ww 
106A zb4 P1-ww bm2 
1068 1s2 P1+rr 
107A P1-cr 
1078 P1+rr 
107D P1-cw 
107EP1-mm 
107F P1-vv::Ac 
107G P1-or 
107H P1-ww 
109D P1+rr ad1 bm2 
109E P1-wr br1 11 
110AP1-wran1 Kn1 bm2 
110DP1-wran1 bm2 
110EP1-wrad1 bm2 
110F P1-wr br1 Vg1 
110H P1-wrbr111 bm2 
110K P1-wr br1 
111G P1-wr rs2 
111H Les5-N1449 
112Eas1 
112H P1-ww br1 
112K an1 gs1 bm2 
113Aas1 br2 
1138 rd1 
113C br1 11 
113E br111 Kn1 
113Khm1;hm2 
113LHm1;hm2 
114C br1 bm2 
114DVg1 
114F br2 hm1 
114G br2 hm1; hm2 
115C v22-8983 
115CA v22-055-4 
115J bz2-m::Ds; A1 A2 C1 C2 Pr1 R1 
116A bz2-m::Ds; A1 A2 Ac C1 Pr1 R1 
116Can1 bm2 
116D an1-bz2-6923; A1 A2 Bz1 C1 C2 

Pr1 R1 
116Gan1 
1161 bz2 gs1 bm2 Ts6; A1 A2 8z1 C1 

C2R1 
117A br2 
117Dtb1 
117DA tb1-8963 
117EKn1 
118BKn1 bm2 
118Clw1 
1181 bm2Ts6 
119A Adh1+1S; Adh2-1P 
119B vp8 
119Cgs1 
119D gs1 bm2 
119ETs6 
119Fbm2 
119H Adh1-FkF(gamma)25; Adh2+N 
120A id1 
1208 nec2 
120C ms9 
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120Dms12 
120E v22-055-4 bm2 
120F Mpl1-Sisco 
120G Mpl1-Freeling 
121Ams14 
1218 br2-mi8043 
121CD8 
121011s1 
121E ty*-8446 
121G ct2 
121GA ct2-rd3 
122A TB-1La 
1228 T8-1Sb (1S.05; 8L.2) 
122C P1-wr; R1-nj T8-1Lc Y1 
124A v* -5688 
1248 j'-5828 
124C w*-8345 
124D v* -5588 
124E w*-018-3 
124F w*-4791 
124H w*-8054 
1241 v*-032-3 
124J v* -8943 
124K yg*-857 4 
124L w*-6474 
125A Les2-N845A 
1258 Mpl1-Jenkins 
126A bz2 gs1 bm2; A1 A2 8z1 C1 C2 

R1 
126Fo13 
126G P1-vv::Ac bz2-m::Ds; A1 A2 8z1 

C1 C2 R1 T8-1Sb (1S.05; 8L.2) 
126H P1-vv::Ac bz2-m::Ds 
1261 P1-vv::Ac 
126J P1-ww-1112 
126K P1-ovov-1114 
126L P1+rr-482 
126M P1-vv-5145 
127A bz2 zb*-N101 bm2 
127B dek1-N792 
127C dek2-N1315A 
127D dek22-N1113A 
127E 11 
127G Tlr1-N1590 
1271 gt1 
128A ij2-N8 
1288 116-N515 
128C I17-N544 
128D pg15-N3408 
128E p916-N219 
128F v25-N17 
129Aw18 
1298 wl*-N266A 
129C zb*-N101 
130A o10-N1356 

CHROMOSOME2 

201 F ws3 lg1 gl2 b1 
2038 al1 
2038A al1-8rawn 
20388 al1-y3 
203D al1 lg1 
203G al1-y3 gl2 
205A al1 lg1 gl2 
2058 lg1 
205C 191 912 
205G al1 912 81 
206A lg1 912 81 
2088 lg1 gl2 81 sk1 
208C lg1 912 81 sk1 v4 
208D lg1 gl2 81 v4 
208E lg1 gl2 b1 
208H gl2 
209E lg1 912 b 1 sk1 
211A lg1 912 b1 111 
211H gl2 wl1 
2128 lg1 gl2 b1 111 v4 
212D lg1 gl2 b1 v4 
2138 l91 gl2 w11 

213F l91 81-V Ch1 
213H lg1 gl2 81-V 
2148 lg1 b1 gs2 
214C d5 
214D gl11 81 
214E 811s1 
214J 81 sk1 
214L lg1 912 mn1 
215A gl14 
21589111 
215C w11 
215Drm1 
215Efl1 
215EA 111-04 
215G 111 v4 
215H w11 9114 
216A 111 v4 Ch1 
216D 111 w3 
216E 111 v4 w3 
216G 111 v4 w3 Ch1 
217A 1s1 
2178 v4 
217G v4 Ch1 
217H ba2 v4 
218A w3 
218Cw3Ch1 
218D Ht1-GE440 
218DA H11-Ladyfinger 
218E ba2 
218G 81+Peru; A1 A2 C1 C2 r1-r 
218H w3-8686 
2181 w3-86GN12 
219A 81+Peru; A1 A2 C1 C2 r1-g 
2198 b1; A1 A2 C1 C2 r1-g 
219CCh1 
219G 81+8olivia-7068; A1 A2 C1 C2 

r1-g 
219H 81+8olivia; A1 A2 C1 C2 Pl1 Pr1 

r1-g 
2191 81+1; A1 A2 C1 C2 Pl1+Rhoades 

r1-r 
219J B1+I; A1 A2 C1 C2 Pl1+Rhoades 

r1-g 
220A Les1-N843 
2208 ws3 l91 gl2; T2-Tripsacum 
220F os1 
221A gs2 
221C wlv1 Ch1 
221Gwlv1 
222A TB-1 Sb-2L4464 
2228 TB-3La-2S6270 
223A trisomic 2 
224A w'-4670 
224A8 w'-017-14-A 
2248 v'-5537 
224H whp1; A1 A2 C1 c2 R1 
2241 ws3-7752 
224J ijmos'-7335 
224K glnec'-8495 
224L ws3-8949 
224M ws3-8991 
224N ws3-8945 
225A T8-3La-2L7285 (2L.26; 3L.1) 
2258 T8-1Sb-2Lc (1S.77; 2L.33) 
227A dek3-N1289 
227C dek16-N1414 
227D dek23-N1428 
227E Les4-N 1375 
2271 nec4-N5168 
228A l18-N1940 
2288 spt1-N464 
228C v26-N453A 
228E 81-Bh 
229A rf3 Ch1 
2298 v24-N424 
229C w3 rf3 Ch1 

CHROMOSOME 3 

301A cr1 

302A d1-6016 
3028 d1 rt1 
302E d1-tall 
303F g2 
303FA 92-p914::I 
303F8 g2-v19 
303FC g2-Funk 
303FD 92-56-3034-14 
303FE 92-59-2097 
303FF 92-94-1478 
303G g2 d1 
304A d1 ys3 
304F d1 Lg3-O ys3 
304G Lg3-0 Rg1 
3041 d1 h1 
305A d1 L93-O 
3058 d1 Lg3-O gl6 
305D d1 R91 
305J d1 h1 Lg3-O 
305K d1 cl1; Clm1-4 
3068 d1 gl6 
306D d1 R91 1s4 
307Ad1 pm1 
307Cpm1 
3088 d1 1s4 
308E ra2 
309D ra2 Rg1 I92-R 
310C ra2 l92-R 
310DC91 
311Acl1 
3118 cl1; Clm1-2 
311C cl1; Clm1-3 
311E rt1 
311Fys3 
311G lg3-Oys3 
312D L93-O 
313A gl6 
313D ms3 
313E L93-O 916 
314A 9I6I92-R A1; A2 C1 C2 R1 
314C gl6 l92-R a1-m et1; A2 C1 C2 

D11 R1 
314F Rg1 gl6 I92-R 
314G 916 lg2-R 
3158 R91 gl6 
31SC Rg1 
315D A1-b(P415); A2 C1 C2 R1 
315H gl6 a1-m; A2 C1 C2 dt1 R1 
316A 1s4 
316H gl6 lg2-R a1-m et1; A2 C1 C2 R1 
3161916192-R a1-m et1; A2 C1 C2 D11 

R1 
317F gl6 1s4 lg2-R 
318A lg1 
3188 ba1 
318C y10-7748 
318H vp1-Mc#2 
3181 y10-8624 
319A lg2-R A1-b(P415) el1; A2 C1 

C2D11 R1 
319C lg2-R a1-m et1; A2 C1 dt1 R1 
319D lg2-R a1-m et1; A2 C1 D11 R1 
319F lg2-A a1-st et1; A2 C1 C2 D11 

R1 
320A lg2-R 
320C I92-R na1 
320E et1 
320F A1 sh2; A2 b1 C1 pl1 R1 
321A A1-d31; A2 C1 R1 
321 B lg2-R a1; A2 C1 C2 dt1 R1 
321C 192-A A1-b(P415) et1; A2 C1 

C2 dl1 R1 
321D a1-m4::Ds; A2 C1 C2 R1 
321E a1-rUq; A2 C1 C2 R1 
321F a1-Mum1; A2 C1 C2 R1 
321G a1-Mum2; A2 C1 C2 R1 
321H a1-Mum3; A2 C1 C2 R1 
322A A1-d31 sh2; A2 C1 dt1 R1 
3228 A1-d31 sh2; A2 C1 D11 R1 
322F a1-m; A2 b1 C1 dt1 pl1 R1 



322G a1; A2 C1 C2 R1 
323A a1-m; A2 C1 D11 R1 
323D a1-m sh2; A2 C1 C2 D11 R1 
323E a1-m et1; A2 C1 C2 D11 R1 
323H a1-st; A2 C1 C2 dt1 Mrh R1 
3231 a1-m1::rDt (Neuffer); A2 C1 C2 

dt1 R1 
324A a1-st; A2 C1 D11 R1 
324B a1-st sh2; A2 C1 C2 D11 R1 
324Ea1-stet1;A2C1 D11 R1 
324G a1-st; A2 C1 dt1 R1 
324H a1 et1; A2 C1 C2 dt1 R1 
3241 a1-st et1; A2 C1 C2 R1 
324J a1-sh2-del::Mu1; A2 C1 C2 R1 
325A a1-p et1; A2 C1 dt1 R1 
325B a1-p et1; A2 B1 C1 D11 Pl1 R1 
325C a1-x1 
325D a1-x3 
325E A1 ga7; A2 C1 C2 R1 
325G a3 
3251 a1-p; A2 C1 C2 D11 R1 
325J a1-p; A2 C1 Pr1 R1 
325K a1-m3 sh2-m1::Ds; A2 Ac C1 C2 

R1 
326A sh2 
326B vp1 
326BA vp1-mum3 
326C Rp3 
326D te1-1 
326DA tel-Forester 
327A TB-3La 
327B TB-3Sb 
327C TB-3Lc 
327D TB-3Ld 
328A trlsomic 3 
329A v*-9003 
329B v*-8623 
329C w*-022-15 
329D yd2 
329E w*-8336 
329F yg*-W23 
329G w*-062-3 
329H v*-8609 
329HA v*-8959 
3291 pg2 
329K yel* -8630 
329L yel*-5787 
330A h1 
330C d1 h1 Lg3-0 
330G a1-mrh; A2 C1 C2 Mrh R1 
330H A1-b(P415) Ring 3; A2 C1 C2 

R1 
3301 a1-Mum2; A2 C1 C2 MuDR R1 
330J a1-Mum2; A2 C1 C2 R1 
330K a1 sh2; A2 C1 C2 dt1 R1 
330L a1-mrh; Mrh 
331A TB-1La-3L5267 
331B TB-1La-3L4759-3 
331C TB-1La-3L5242 (1L.2; 3L.65) 
331E TB-3LI 
331F TB-3Lg 
331H TB-3LI 
3311 TB-3Lj 
331J TB-3Lk 
331K TB-3LI 
332B dek5 
332C cp*-N1283 
332D Wrk1-N1020 
332G dek6-N627D 
332H dek17-N330D 
3321 Lxm1-N1600 
332J ms23 
332L brn1-R 
332M Spc1-N1376 
332N wlu1-N28 
332P g2 brn1-R 
3320 bm1-R cr1 
332R brn1-R ra2 lg2-R 
332S Mv1 

CHROMOSOME4 

401BGa1 

401CGa1 su1 
4010 Ga1-S 
4011 ga1 su1 
401J Ga1-M 
401K Ga1-S su1 
402A s11 
402C 112 st1 
402D Ts5 
403A Ts5 112 
403B Ts5 su1 
405B la1 
405D la1 su1 gl3 
405G la1 su1 gl4 
406C 112 
406D fl2 su1 
407Dsu1 
407E su1-am 
407F su1-am; du1 
408B bm3-1 su 1 
408C su1 zb6 
40BE bm3-1 
408J su1 ra3 
408K su1; se1 
409A su1 zb6 Tu1 
410D su1 zb6 gl3 
411A su1 gI4 j2 
411B su1 gl4 o1 
411F su1 v17 gl7 
412C su1 gl3 
412Esu1 j2gl3 
412G su1 gl4 Tu1 
413A su1 o1 
413B su1 gl4 · 
413D su1 C2-ldf1(Active-1); A1 A2 

C1R1 
413F su1 de*-414E 
413G v23 Su1 gl3 
414A bt2 
414AA bt2-Williams 
414AB bt2-60-158 
414B gl4 
414BA gl4-Stadler 
414B8 gl4-gl16 
414C gl4 o1 
414D gl4 j2 
414E de'-414E 
414F bm3-1 gl4 
415A j2 
416A Tu1 
416B Tu1-I(1st) 
416C Tu1-1(2nd) 
416D Tu1-d 
416E Tu1-md 
416F Tu1 gl3 
417A j2 gl3 
417B vB 
417C gl3 
417D o1 gl3 
418A gl3 dp1 
418B c2; A1 A2 C1 R1 
418D C2-ldl1(Active-1); A1 A2 C1 R1 
418E dp1 
418Fo1 
418G v17 
419A v23-8914 
419E 917 
419F Dt6 gl3; a1•m A2 C1 R1 
419H c2-m1::Spm; A1 A2 C1 R1 
420A su1 D14; a1-m A2 C1 R1 
420B TB-9Sb-4L6504 
420C nec'-rd 
420CA nec*-016-15 
420D yel*-8457 
420F dp*-4301-43 
420G w'-9005 
420H D14 C2; a1-m A2 C1 R1 
4201 TB-9Sb-4L6222 
421A TB-4Sa 
421 B TB-1 La-4L4692 
421C TB-7Lb-4L4698 
422A trisomic 4 
423A TB-4Lb 
423B TB-4Lc 

423C TB-4Ld 
423D TB-4Le 
423E TB-4LI 
427A cp2-o12 
427AA cp2-dek7 
427AB cp2 
427B dek25-N 1167 A 
427C Ysk1-N844 
427D orp1-N1186A; orp2-N1186B 
427E dek8-N 1156 
427F dek10-N1176A 
427G Ms41-N1995 
427H dek31-N1130 
4271 Sos 1-rel 
428A 915 Su1; 9120 
428C nec5-N642 
428D spt2-N1269A 
428F lw4; Lw3 
428G bx1 
428H 915 su1; gl20 

CHROMOSOME 5 

501A am1 a2; A1 C1 R1 
5018 lu1 
5010 ms13 
501E9I17 
501G 9117 a2; A1 C1 C2 R1 
501Iam1 
502B A2 ps1-vp7 pr1; A1 C1 R1 
502D A2 bm1 pr1; A1 C1 R1 
502F Nl2-N1445 
503AA2 bm1 pr1 ys1; A1 C1 C2 R1 
504A A2 bt1 pr1; A1 C1 R1 
504C A2 bm1 pr1 zb3; A1 C1 R1 
504E A2 bt1; A1 C1 C2 R1 
505B A2 pr1 ys1; A1 C1 R1 
505C A2 bt1 pr1 ga'-Rhoades; A1 C1 

R1 
506A A2 v3 pr1; A1 C1 R1 
506B A2 pr1; A1 C1 R1. 
506C A2 pr1 v2; A1 C1 R1 
506D na2 A2 pr1; A 1 C1 R1 
506F A2 pr1 v12; A1 C1 R1 
506L A2 br3 pr1; A1 C1 R1 
507Aa2;A1 C1 R1 
507AA a2-Mus2; A1 C1 C2 R1 
507AB a2-Mus3; A1 C1 C2 R1 
507B a2 bm1 bt1 bv1 pr1; A1 C1 C2 

R1 
507F a2 bm1 bt1 ga*-Rhoades; A1 C1 

C2R1 
507Ga2bm1 bt1;A1 C1 C2R1 
507H A2 bt1 pr1; A1 C1 C2 R1 
508A a2 bm1 bt1 pr1; A 1 C1 C2 R1 
508C a2 bt1 bv1 pr1; A 1 C1 R1 
508F a2 bm1 pr1 ys1; A1 C1 R1 
510A a2 bm1 pr1 v2; A 1 C1 R1 
510G a2 bm1 pr1 eg1; A1 C1 R1 
511C a2 bt1 pr1; A1 C1 R1 
511F a2 bt1 Pr1; A1 C1 C2 R1 
511Ha2bt1;A1 C1 C2R1 
512Ba2v3pr1;A1 C1 R1 
512C a2 bt1 pr1 ga'-Rhoades; A1 C1 

R1 
513Aa2pr1;A1 C1 R1 
513C a2 pr1 v2; A1 C1 R1 
513D A2 pr1 sh4; A1 C1 C2 R1 
513E a2 pr1 v12; A1 C1 R1 
515A vp2 
515AB a2 vp2-green mosaic; A1 C1 C2 

R1 
515C ps1-vp7 
515CA ps1-8776 
515GB ps1-881565-2M 
515Dbm1 
516B bt1-R 
516BA bt1-Elmore 
516B8 bt1-C103 
516BC bt1-Singleton 
516B0 bt1-sh3 
516Cms5 
516Dtd1 ae1 

516G A2 bm1 pr1 y91; A1 C1 R1 
517Av3 
517AB v3-8982 
5178 ae1 
517E ae1 pr1 glB 
518A sh4 
518B glB 
518C na2 
518D lw2 
519A ys1 
519AA ys1-W23 
519B eg1 
519C v2 
519D yg1 
519E A2 pr1 y91; A1 C1 R1 
519F A2 pr1 glB; A1 C1 R1 
519Gzb3 
520B v12 
520C br3 
520F A2 Dap1; A1 C1 C2 R1 
520GA2pr1 Dap1;A1 C1 C2R1 
520H Dap1-2 
521A nec3 
521 B Nec'-3-9c 
521C nec'-8624 
5210 nec'-5-9(5614) 
521 E nec'-7476 
521 F nee' -6853 
521G nec'-7281 
521H nec' -8376 
5211 v' -6373 
521J y9*-8951 
521K lw3; lw4 
521L w' -021-7 
521N lnec'-5931 
521 P lw3; lw4 
522A TB-5La 
522B TB-5Lb 
522C TB-5Sc 
527A dek18 
527B dek9-N 1365 
527C dek26-N1331 
527D dek27-N1380A 
527E grt1 . 
527F nec7-N756B 
527H Msc2-N 1124B 
5271 pp91-N199 
527J nec6-N493 
528A Hsf1-N1595 
528B wgs1-N206B 
528C anl1-N1643 
528D TB-1La-5S8041 

CHROMOSOME 6 

601C rgd1 y1 
6010 rgd1 Y1 
601F po1-ms6 y1 pl1 
602A po1-ms6 wi1 y1 
602C y1 
602J y1-w-mut 
602K y1-gbl 
602L y1-pb1 
602M y1 -8549 
602N y1-Caspar 
6020 y1-0317 
603A y1 110 
603AA y1 110-1359 
603B y1 111-4120 
603C y1 112-4920 
603D w15-8896 y1 
603H mn3-1184 y1 
604D y1I15 
604F y1 si1-mssi 
604Hy1 ms1 
6041Y1 ms1 
605A wi1 y1 Pl1 
605C y1 pg11; pg12 wx1 
605E wi1 Y1 Pl1 
605F wi1 Y1 pl1 
606A Y1 p911;pg12Wx1 
606AA pgl 1-8925; p912-8925 
606AC p911-8563; pg12-8563 
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606AO pg11-8322; pg12-8322 
606B y1 pg11; pg12 wx1 
606C Y1 pg11; pg12 wx1 
606Ey1 pl1 
606Fy1 Pl1 
6061 y1 pg11 su2; pg12 Wx1 
607Ay1 Pl1-Bh1; A1 A2 c1 R1 sh1 wx1 
607C y1 su2 
607E y1 pl1 Sli2 v7 
607~ Pl1-8h1; A1 A2o1 C2R1 sh1 

6088 Y1I12 
608F y1 pl1 w1 
608G Y1I11 
609A Y1 pb4 
6108012Pl1;a1•mA2C1 R1 
610C pl1 sm1; P1+rr 
610F Y1 pl1 su2 V7 
610HY1012pl1;a1-mA2C1 R1 
6101 Y1 Pl1 Sli2 V7 
611A Pl1 sm1; P1·trr 
611D Pt1 
611EY1 pl1 w1 
611EA W1-7366 
6111 sm1 py1; P1+rr 
611K Y1 Pl1 w1 
611Lw1; 11 
611M afd1 
612A w14 
612B po1 
612BA po1-ms6 
612C I ·4923 
612D oro1 
6120A oro1-6474 
6121 py1 
612J w14·8657 
612K w14-8050 
612L w14-6853 
612M w14-025-12 
612N w14-1-7(4302-31) 
613A 2NOR; A1 a2 bm1 C1 pr1 R1 v2 
6130 vms'-8522 
613F w14-8613 
613H pg11-6853; pg12-6853 
6131 tus'-5267 
613L w• -8954 
613M yel'-039-13 
613N yel'-7285 
613P yel'-8631 
613T pgl 1·6656; pg12-6656 
614A TB-6Lb 
614B TB-6Sa 
614C TB-6Lc 
615A trisomic 6 
627A dek28-N1307A 
627B dek19-N1296A 
627C vp'-5111 
6270 hcf26 
627E D12; a1-m A2 C1 C2 R1 T8-6Lc 

CHROMOSOME 7 

7018 ln1-0 
701C ln1-D gl1 
701Do2 
701F Hsi 
702A vs o5 
702B o2 v5 ra1 gl1 
702I lnl-Brawn 
703A o2 v5 gl1 
703D o2 ra1 911 
703J Rs1-0 
703K Rs1-Z 
704A 02 ra1 gl1 ij1 
7048 o2 ra1 gl1 sI1 
705A o2 gl1 
705B o2 gl1 sI1 
705D o2 bd1 
706A o2 sI1 
707A y8 v5 gl1 
707Bin1; A1 A2C1 pr1 R1 
707C in1 gl1; A1 A2 C1 C2 pr1 R1 
707D v5 
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707E vp9 
707EA vp9-3111 
707EB vp9-86GN9 
707EC vp9-86GN15 
707F y8 911 
707G in1 gl1; A 1 A2 C1 C2 Pr1 R1 
708A ra1 
708G y8 
709A gl1 
709C gl1-m 
710A gl1 Tp1 
7108911 mn2 
710E o5 gl1 
710H ms7 gl1 Tp1 
711A Tp1 
7118 ij1-ref::Ds 
711G ts'-br 
712Ams7 
712B ms7 gl1 
712D ij1 bd1 
713A Bn1 
713E Bn1 bd1 
713H Bn1 ij1 
7131 bd1 Pn1 
714A Pn1 
714B o5 
714Dva1 
715A D13; al•m A2 Cl R1 
715C gl1 D13; a1-m A2 C1 R1 
716A v'-8647 
7168 yel'-7748 
716F Les9-N2008 
717A TB-7Lb 
718A trisomic 7 
719A TB-7Sc 
720A D13; a1-m TB-7Lb 
727A dek11-N788 
7278 wlu2-N543A 
727E gl1-cgl 
727G Rs1-0 o2 vs ra1 gl1 
728A Px3-6 
728B ptd2-Mu3193 
728C cp1 
7280 sh6-8601 
728E sh6-1295 

CHROMOSOME 8 

801A gl18-gl23 
801B v16 
8011 yel'-024-5 
801K v16 msB 
802G ms43 
803A ms8 
8038 nec1-025-4 
803D gl18 ms8 
803F nec1-7748 
803G nec1-6697 
804A v21-A552 
804B dp' -8925 
804D wh'-053-4 
804E w'-017-14-B 
804F w'-034-16 
804G w'-8635 
804H w'-8963 
BOSA 113 
805C 9118 v21-A552 
805D fl3 ms8 j1 
805Eel1 
805G ms8j1 
806A TB-Bla 
806B TB-8Lb 
807A trisomic 8 
808A ell 
808B L94-0 
809A T8-8Lc 
810Av16j1;I1 
810B j1 
810C 9118v21·A55211 
827A dek20-N1392A 
827B dek29 
827C Bif1-N1440 
827D Sdw1-N1592 

827E Clt1 -N985 
827 J wlu3-N203A 
827K pro1 
827L pro1-Tracy 

CHROMOSOME 9 

9018 y92 C1 sh1 bz1; A1 A2 C2 R1 
901C y92 C1 sh1 bz1 wx1; A1 A2 C2 

R1 
901E y92 Cl bz1 wx1; Al A2 R1 
901H y92 Cl 8z1; Al A2 C2 R1 
9011 y92 C1 sh1 Bz1 wx1 K9S-I; A 1 A2 

C2R1 
902A yg2 c1 sh1 bz1 wx1; A1 A2 R1 
902B yg2 c1 sh1 wx1; A 1 A2 R1 
902Cyg2c1 sh1 wx1 gl15;A1 A2R1 
902D yg2 C1 sh1 8z1 wx1 K9S-s; Al 

A2C2 R1 
903A C1 sh1 bz1; A1 A2 R1 
9038 Cl sh1 bz1 wx1; A1 A2 R1 
903D C1-I sh1 bz1 wx1; Al A2 R1 
904B C1 sh1; A1 A2 R1 
904C C1 sh1 wx1; A1 A2 C2 R1 
904D Cl wx1 ar1; A1 A2 R1 
904F Cl sh1 bz1 gl15 bm4; A1 A2 C2 

R1 
905A Cl sh1 wx1 K9S-I; A1 A2 C2 R1 
905CC1 bz1 Wx1;A1 A2R1 
905D C1 sh1 wx1 K9S-I; A1 A2 C2 

K10R1 
905E C1 sh1 wx1 v1; A 1 A2 C2 R1 
905G C1 bz1 wx1; A 1 A2 C2 R1 
905H c1 sh1 wx1; A1 A2 b1 C2 R1-

sc:m2 
906A Cl wx1; A 1 A2 C2 Dsl Pr1 R1 y1 
906B Cl wx1; A1 A2 C2 Dsl pr1 R1 Y1 
906C C1-I Wx1; A 1 A2 C2 Dsl R1 
906D CH; A1 A2 C2 R1 
907AC1 wx1; A1 A2 C2 R1 
907E CH wx1; A1 A2 C2 R1 y1 
907H c1-n; A1 A2 b1 C2 pl1 R1 
9071 C1-S wx1 
908A C1 Wx1 da1 ar1; A1 A2 C2 R1 
9088 C1 wx1 v1; Al A2 C2 R1 
908D C1 wx1 gl15; A1 A2 C2 R1 
908F Cl wx1 da1; A1 A2 C2 R1 
908H C1 wx1; A1 A2 C2 R1 y1 
909A C1 wx1 B11-ref; A1 A2 C2 R1 
909B c1 bz1 wx1; A1 A2 C2 R1 
909C cl sh1 bz1 wx1; A1 A2 C2 R1 y1 
909D c1 sh1 wx1; A1 A2 C2 R1 
909E cl sh1 wx1 v1; A1 A2 C2 R1 
909F cl sh1 wx1 gl15; A1 A2 C2 R1 
9108 c1 sh1 wx1 gl15 B11-ref; A1 A2 

C2R1 
910Dc1;A1 A2C2R1 
910G C1 sh1-bz1-x2 Wx1; A1 A2 C2 

R1 
910H C1 sh1-bz1-x3; A1 A2 C2 R1 
911A cl wx1; A1 A2 C2 R1 y1 
911B cl wx1 v1;A1 A2C2R1 
911C c1 wx1 9115; A1 A2 C2 R1 
912Ash1 
912AA shl-1746 
912AB shl-9026-11 
9128 sh1 wx1 v1 
912E lo2 
912H lo2 wx1 
913C sh1I7 
913D sh1I6 
913E ball 
914A wx1 d3-N660B 
914K Wc1-ly; Y1 
915Awx1 
9158 wx1-a 
915Cw11 
915E wx1-Alexander 
916Awx1 v1 
916C wx1 bk2 
916E wx1 v1 gl15 
917A wx1 811-ref 
917Cv1 

917D ms2 
917E 9I15-Sprague 
917EA gl15-Lambert 
917F d3 
917FF d3·d2-Harberd 
918A gl15 811-ref 
918B 9115 bm4 
918C bk2Wc1 
918DWc1 
918F Wx1 811-ref 
918G Wc1 B11-ref bm4 
918GA Wc1-Wh 811-ref bm4 
918K bk2 v30 
918Lwx1 Wc1 
919A bm4 
9198 811-ref bm4 
919C 16 
919DI7 
919G 16;11 
920A yel'-034-16 
9208 w*-4889 
920C w'-8889 
920E w'-8950 
920F w'-9000 
920G D13; Tp3-9 
920L y9zb' -5588 
920M wnl*-034-5 
920N pyd1 
921A TB-9La 
9218 T8-9Sb 
921C T8-9Lc 
922A trisomic 9 
9228 Wc1; TB-9Lc 
922C C1-I; TB-9Sb 
922D TB-9Sd 
923A wx1-a 
9238 wx1-B 
923C wx1-81 
923D wx1-82::TouristA 
923E wx1-B3::Ac 
923F wx1-84::Ds2 
923G wx1-86 
923H wx1-87 
9231 wx1-88 
923J wx1-8L2 
923K wx1-BL3 
923L wx1-C 
923Mwx1-C1 
923N wx1-C2 
9230 wx1-C3 
923P wx1-C4 
9230 wx1-C31 
923R wx1-C34 
923S wx1-F 
923T wx1-90 
923U wx1-H 
923V wx1-H21 
923W wx1-I 
923X wx1-J 
923Y wx1-M 
923Zwx1-M1 
9232A wx1-M6R 
92328 wx1-M6NR 
923ZC wx1-M8 
9232D wx1-P60 
923ZE wx1-R 
923ZF wx1 -Stonor 
924A wd1 Wd1+ C1 Cl-I Ring 9S; A1 

A2C2 R1 
924B CH Ring 9S; A1 A2 C2 R1 
924C yg2 
924D wd1 
925A bz1-m1 ::Ds wx1-m9::Ac 
9258 wx1-m9::Ds; Ac 
925C bz1-m2::Ac 
925E bz1-m2(Dll)::Ds wx1-m6 
925F C1 sh1 bz1 wx1-m8::Spm-I8 
925G wx1-m7::Ac7; a2-m4::Ds 
925H bz1-m2(Dl)::Ds wx1; R1-sc 
927A dek12-N873 
9278 dek13-N744 
927C dek30-N1391 
927D Les8-N2005 



927E Zb8-N1443 
927H C1 D17; a1-r A2 C2 R1 
9271 G6-N1585 
928A v28-N27 
928B wlu4-N41A 
928G c1-m5::Spm wx1-m8::Spm-18; A1 

A2C2R1 
928H wx1-m7::Ac7 
9281 C1 bz1-mut::Mut; A1 A2 Bz2 C2 

R1 
929A TB-9 isochromosome Type 1 
929B TB-9 isochromosome Type 2 
929C T9-B(La); T9-B(Sb) 
929D TB-9 lsochromosome (original) 
929E Dp9 
929F T9-B (La + Sb) 
929G T9-8(4453); TB-9Sb 
929H T9-3(6722); TB-0Sb 
9291 TB-9Sb-1866 
929J TB-9Sb-1852 
929K TB-9Sb-2150 
929L TB-9Sb-14 
929M TB-9Sb-2010 

CHROMOSOME 10 

X01A oy1-Anderson 
X01AB oy1-8923 
X01Boy1 R1;A1 A2C1 
X01C oy1 bf2 
X01E oyt bf2 R1; A1 A2 C1 
X02Coy1 zn1 R1;A1 A2C1 C2 
X02E oy1 du1 r1; A1 A2 C1 C2 
X02Goy1 2111 
X03A sr3 
X03B 091 
X03D Og1 R1; A1 A2 C1 C2 
X03Eoy1 y9 
X04A Og1 du1 R1; A 1 A2 C1 
X04B ms11 
X04D bf2 
X05A zn1 bl2 
X05E bl2 sr2 
X06A bl2 r1 sr2; A1 A2 C1 C2 
X06C nl1 g1 R1; A1 A2 C1 C2 
X06F bl2 R1 sr2; A1 A2 C1 C2 
X07A nl1 g1 r1; A1 A2 C1 C2 
X07C y9 
X07Dnl1 
X08Fli1 
X08FA li1-IL90-243Tco 
X09B li1 91 R1; A1 A2 C1 C2 
X09EA 91-94 
X09EB g1-56-3004-24 
X09EC 91-1-7(X-55-16) 
X09ED 91-68-609-13 
X09EE g1-ws2 
X09Fms10 
X09G li1 g1 r1; A1 A2 C1 C2 
X10Adu1 
X10D du1 91 r1; A1 A2 C1 C2 
X10Fzn1 
X10FA zn1-N25 
X10G du1 v18 
X11Azn1 91 
X11Czo1 g1 r1;A1 A2C1 C2 
X11D Tf2 g1 r1; A1 A2 C1 C2 
X11E g R1 sr2; A1 A2 C1 C2 
X11F g1 r1; A1 A2 C1 C2 
X11Hzn1 R1-r;A1 A2C1 C2 
X111Tp2g1 sr2 
X12A g1 r1 sr2 
X12C g1 R1-g sr2; A1 A2 C1 C2 
X12Eg1 R1;A1 A2C1 C2 
X13D g1 r1-r sr2; A1 A2 •1 C2 
X14A rl-r lsr1-Ej; A1 A2 C1 C2 
X14Fv18r1;A1 A2C1 C2 
X15B 11 r1 sr2; A 1 A2 C1 C2 
X15C R1-g; A1 A2 C1 C2 
X15D r1-ch; A1 A2 C1 C2 Pl1 
X15F lsr1 R1-g Sr2 
X15G lsr1 r1-g sr2 
X16B r1; A1 A2 abnormal-10 C1 

X16C R1-ch; A1 A2 B1 C1 C2 Pl1 
X16D r1 sr2; A1 A2 C1 C2 
X16F R1 K10-II; A1 A2 C1 C2 
X17A r1-g; A1 A2 C1 C2 
X17B r1-r; A1 A2 C1 C2 
X17C R1-mb; A1 A2 C1 C2 
X17D R1-nj; A1 A2 C1 C2 
X17E R1-r; A1 A2 C1 C2 
X18A R1-lsk; A1 A2 C1 C2 
X18B R1-sk:nc-2; A1 A2 C1 C2 
X18C R1-st; A1 A2 C1 C2 
X18D R1-sk; A1 A2 C1 C2 
X18E R1-st Mst1 
X18G R1-sc:m2; A1 A2 bz2 C1 C2 
X18H R1-nj; A1 A2 bz2 C1 C2 
X181 r1; A1 A2 C1 C2 
X19B w2 
X19BA w2-Burnham 
X19C 11 w2 
X19Do7 
X19F r1 w2 
X20B 11 
X20C v18 
X20F yel*-8721 
X20H yel'-5344 
X20HA yel'-8793 
X20HB y9'-8962 
X21A TB-10La 
X21B TB-10L19 
X22A TB-10Sc 
X22B T1La-B-10L18 
X22C TB-1 0Lb 
X22D T10S-B-10L18a 
X23A trisomic 10 
X24A cm1 
X24B lep*-8691 
X25A R1-sc:m2; a1-st A2 C1 C2 
X25B R1-sc:m2; A1 A2 C1 c2 
X25C R1-sc:m122; A1 A2 C1 C2 pr1 
X25D R1-sc:m2; A1 a2 C1 C2 
X25E R1-sc:m2; A1 A2 c1 C2 
X26A R1 r1-X1; A1 A2 C1 C2 
X26B R1-sc:m2; A1 A2 C1 C2 
X26C R1-sc122; A1 A2 C1 C2 
X26D R1-sc*5691; A1 A2 C1 C2 
X26E R1-sc:m2; A1 A2 C1 C2 pr1 wx1 
X26F R1-sc:m2; A1 A2 C1 C2 ln1-D 
X26G R1-sc:m2; A1 A2 C1 c2-

m2::dSpm 
X26H R1-sc:m2; wx1 A1 A2 C1 C2 
X27A dek14-N1435 
X27B dek15-N1427A 
X27C w2-N1330 
X27D Les6-N1451 
X27E gl21-N478B; gl22-N478C 
X27F Vsr1-N1446 
X27G Oy1-N700 
X27H orp2-N1186B; orp1-N1186A 
X271 119-N425 
X27J 113-N59A 
X27K v29 
X28B R1-sc:m2; a1-m1::rDt (Neuffer) 
X28C R1-nj (Cudu); A1 A2 C1 C2 
X2BD Vsr*-N716 
X2BE Les3 
X28F cr4-6143 
X2BG R1-nj (Chase); A1 A2 C1 C2 
X2BI R1-sc:m2; a1-m1-5719::dSpm A2 

C1 C2 
X30A TB-1 0L 1 
X30B TB-1 0L2 
X30C TB-1 0L3 
X30D TB-10L4 
X30E TB-1 0L5 
X30F TB-1 0L6 
X30G TB-10L7 
X31B TB-10L9 
X31C TB-10L10 
X31D TB-10L11 
X31E TB-10L12 
X31G TB-10L 14 
X31H TB-10L15 
X311 TB-10L16 

X31J TB-10L17 
X32C TB-1 0L20 
X32D TB-10L21 
X32H TB-1 0L25 
X321 TB-1 0L26 
X32J TB-1 0L27 
X32K TB-1 0L28 
X33A TB-1 0L29 
X33B TB-1 0L30 
X33D TB-1 0L32 
X33E TB-10L33 
X33G TB-10L35 
X33H TB-10L36 
X34A TB-10L37 
X34B TB-1 0L38 

UNPLACED GENES 

U140C 14 
U140E 13 
U140F Fas1 
U140G ms22 
U140H ms24 
U240A Les7-N1461 
U240B vp10 
U240BA vp10-86GN5 
U240BB vp10-TX8552 
U240C v13 
U240Do11 
U340B zb1 
U340C zb2 
U340D g1-ws2-Pawnee; ws1-Pawnee 
U340Ey11 
U340F y12 
U340G oro2 
U340H oro4 
U440A o9 
U440B gl13 
U440C zn2 
U440D ub1-76C 
U440E frz1 
U440F mg1-Sprague 
U540A dv1 
U540B dy1 
U640A dsy1-Doyle 
U640C pam1 

MULTIPLE GENE 

M141AA1;A2B1 C1 C2Pl1 Pr1 R1-g 
M141D A1; A2 b1 C1 C2 pl1 R1-g 
M241AA1;A2B1 C1 C2Pl1 Pr1 r1-g 
M341D A1; A2 B1 c1 C2 Pl1 Pr1 R1-r 
M341F A1; A2 b1 C1 C2 pl1 Pr1 R1-r 
M441D A1; A2 B1 C1 C2 Pl1 Pr1 r1-r 
M441E A1; A2 B1 c1 C2 Pl1 Pr1 r1-r 
M441F A1; A2 b1 C1 C2 pl1 Pr1 R1-g 

wx1 
M641B A1; A2 b1 C1 C2 pl1 Pr1 R1 

wx1 
M641C A1; A2 b1 C1 C2 pl1 Pr1 R1 

wx1 
M641D A1; A2 C1 C2 Pr1 r1 wx1 y1 
M641 E A1; A2 C1 C2 r1-g wx1 y1 
M741A A1; A2 b1 C1 C2 pl1 Pr1 r1-g 

wx1 
M741FStock6A1;A2C1 C2 pl1 R1-g 

y1 
M741G Stock 6 A1; A2 C1-I C2 pl1 

R1-gwx1 y1 
M741H Stock 6 A1; A2 B1 C1 C2 Pl1 

R1-nj 
MB41AA1;A2C1 C2pr1 R1 su1 
MB41 C colored scutellum A 1; A2 C1 C2 

Pr1 R1 
M941AA1;_A2c1 C2 Pr1 R1 wx1 y1 
MX40A bm2 lg1 a1 su1 pr1 y1 g11 j1 

wx1 g1 {Mangelsdorf's lester) 
MX40D gJ1; wx1 Y1 
MX40E gl8; wx1 y1 
MX41A A1 A2 C1 C2 R1 pr1 y1 wx1 gl1 
MX41B A1; A2 C1 C2 911 pr1 R1 SJ1 

wx1y1 

MX41 C a1; a2 bz1 bz2 c1 c2 pr1 r1 wx1 
y1 

MX41D a1; A2 C1 C2 gl1 pr1 R1 su1 
wx1y1 

MX41E a1-m1-n::dSpm; A2 C1 C2 R1 
wx1 -mB::Spm-18 

B-CHROMOSOME 

B542A Black Mexican Sweet, B 
chromosomes present 

B542B Black Mexican Sweet, B 
chromosomes absent 

TETRAPLOID 

N102A A1; A2 Autotetraploid B1 C1 
C2 Pl1 Pr1 R1 

N102C a1-m; A2 Autotetraploid C1 C2 
D11 R1 

N102D A1; A2 Autotetraploid C1 C2 
R1 

N102E Autotetraploid; B chromosomes 
present 

N 102EA Autotetra ploid; B 
chromosomes present 

N102F A1; a2 Autotetraploid C1 C2 
R1 

N103A Autotetraploid; P1+rr 
N103B Autotetraploid; P1-vv::Ac 
N103C Autotetraploid; P1-ww 
N103D Autotetraploid; P1-wr 
N103E Autotetraploid; P1-mm 
N103F Autotetraploid; bz2 
N104A Autotetraploid; su1 
N104B A1; A2 Autotetraploid C1 pr1 

R1 
N105B Autotetraploid; wx1 y1 
N105D A1; a2 Autotetraploid bl1 C1 

C2R1 
N105E Autoletraploid; bt1 
N106C Autotetraploid; wx1 
N107B W23 Autotetraploid 
N107C SyntheUc B Autotetraploid 
N107D NS Autolelraploid 

CYTOPLASMIC 
STERILE/RESTORER 

C736A R213 Rf1; rf2 
C736B Ky21 Rf1; Rf2 
C736C B37 rf1; Rf2 
C736D NB rf1; Rf2 
C736E Tr rf1; rf2 
C736F W23 rf1; Rf2 
C736G B73 rf1; Rf2 
CB36A Wf9 cms-T; rf1 rf2 
CB36B N cytoplasm rf1; rf2 

CYTOPLASMIC TRAIT 

C337A NCS2 
C337B NCS3 

TOOLKIT 

T31BAA ig1; lg1 TB-3Ld; R1-nj 
T318AB cms-L; ig1 R1-nj 
T318AC ems-MY; ig1 R1-nj 
T318AD ems-ME; ig1 R1-nj 
T318AE cms-S; ig1 R1-nj 
T318AF ems-SD; ig1 R1-nj 
T318AG ems-VG; ig1 R1-nj 
T31BAH ems-CA; ig1 R1-nJ 
T318AI cms-C; ig1 R1-nj 
T318AJ cms-Q; ig1 R1-nj 
T940A Hi-II Parent A (for producing 

embryogenic callus cultures) 
T940B HI-II Parent B (for producing 

embryogenic callus cullures) 
T940C Hi-II A x B (for producing 

embryogenic callus cultures) 
T940D KYS (for chromosome 
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observations In pachytene 
111icrosporocytes) 

T3307A lrAc8178; 12-9b (2S.18; 
9L.22) wx1 

T3307B trAc8178; T2-9c {2S.49; 
9S.33) wx1 

T3307C trAc8178; T2-9d {2L.83; 
9L.27) wx1 

T3307D trAc8163; T3-9{8447) 
{3S.44; 9L.14) wx1 

T3307E lrAcB163; T3-9c {3L.09; 
9L.12) wx1 

T3307F trAcB183; T3-9(8447) 
{3S.44; 9L.14) wx1 

T3307G trAc8183; T3-9c (3L.09; 
9L.12) wx1 

T3308A trAc8200; T 4-9g (4S.27; 
9L.27) wx1 

T330BB trAc6076; T5-9a (SL.69; 
9S.17) wx1 

T330BC trAc6076; T5-9c (5S.07; 
9L.1) wx1 

T3308D trAc8175; T5-9c (5S.07; 
9L.1) wx1 

T3308E trAc8193; T5-9c {5S.07; 
9L.1) wx1 

T3308F trAc8179; TS-9.i (SL.69; 
9S.17) wx1 

T3308G trAc8181; T5-9a (SL.69; 
9S.17) wx1 

T3308H trAc8186; T5-9a (SL.69; 
9S.17) wx1 

T3309A trAc8196; T5-9a (SL.69; 
9S.17) wx1 

T3309B trAc6062; T6-9b (6L.1; 
9S.37) wx1 

T3309C trAc6063; T6-9b (6L.1; 
9S.37) wx1 

T3309D trAc8172; T6-9b {6L.1; 
9S.37) wx1 

T3309E trAc8184; T6-9b (6L.1; 
9S.37) wx1 

T331 0A lrAc8161; T7-9{4363) 

(7ctr; 9clr) wx1 
T3310B trAc8173; T7-9(4363) 

{7ctr; 9ctr) wx1 
T3310C trAc8173; T7-9a (7L.63; 

9S.07) wx1 
T3310D trAc8190; T7-9(4363) 

(7clr; 9ctr) wx1 
T3310E trAc8194; T7-9{4363) 

{7ctr; 9ctr) wx1 
T3310F trAc8185; T7-9a {7L.63; 

9S.07) wx1 
T3311A trAc8162; T8-9d (BL.09; 

9S.16) wx1 
T3311B trAc8182; T8-9d {BL.09; 

9S.16) wx1 
T3311 C trAc8182; TB-9(6673) 

(8L.35; 9S.31) wx1 
T3311D trAc6059; T9-10b (10S.4; 

9S.13) wx1 
T3311 E trAc6059; T9-10(8630) 

{10L.37) wx1 
T3311 F trAc8180; T9-10b (10S.40) 

wx1 
T3311G trAcB180; T9-10(8630) 

(1 0L.37) wx1 

INVERSION 

I143B lnv1c (1S.3-1L.01) 
I143C lnv1d (1L.55-1L.92) 
I143D lnv1k (1L.46-1L.82) 
I243A lnv2b (2S.5-2L.15) 
I243B lnv2h (2L.13-2L.51) 
I343A lnv3a (3L.38-3L.95) 
I343B lnv3b (3L.19-3L.72) 
I343C lnv3c (3L.09-3L.81) 
I344A lnv9a (9S.7-9L.9) 
I443A lnv4b (4S.1-4L.12) 
l443B lnv4c {4S.8-4L.62) 
I444A lnv2a (2S.7-2L.8) 
I543A lnv4e {4L. 16-4L.81) 
I743A lnv5(8623) (5S.6-SL.69) 
I743B lnv6d {6S.7-6L.33) 

We received the following request 
:-) 

l743C lnv6(3712) (6S.7-6L.63) 
I843A lnv6e (6S.8°6L.32) 
I943A lnv7f {7L.17-7L.61) 
I943B lnv7(8540) (7L.12-7L.92) 
I943C lnv7(3717) (7S.3-7L.3) 
IX43A lnv8a (8S.3-BL.15) 
IX43B lnv9b (9S.05-9L.87) 

RECIPROCAL TRANSLOCATION 
(wx1 and Wx1 marked} 

wx01A T1-9c (18.48; 9L.22); wx1 
wx01B T1-9{5622) {1L.1; 9L.12); wx1 
wx02A T1·9 4995 {1L.19; 9S.20); 

wx1 
wx03A T1-9(8389) (1L.74; 9L.13); 

wx1 
wx04A T2-9c \2S.49; 9S.33); wx1 
wxOSA T2-9b 2S.18; 9L.22~; wx1 
wx06A T2-9d 2L.83; 9l.27 ; wx1 
wx07A T3-9{8447) (3S.4 ; 9L. 14); 

wx1 
wx08A T3-9c '(3L.09; 9L.12)·! wx1 
wx10A T4-9e {4S.53; 9L.26; wx1 
wx11A T4-9g (4S.27; 9L.27; wx1 
wx12A T4·9(5657) {4L.33; 9S.25); 

wx1 
wx13A T4-9b {4L.9; 9L.29); wx1 
wx15A TS-9(4817) {SL.06; 9S.07); 

wx1 
wx16A TS-9d (Sl.14; 9l.1); wx1 
wx17A T5-9a (SL.69; 9S.17); wx1 
wx18A TB-9(4778) (6S.8; 9l.3); wx1 
wx20A T6-9b {6l.1; 9S.37); wx1 y1 
wx21A T6-9{4505) (6L.13; 9ctr); 

wx1 
wx22A T7•9(4363) {7ctr; 9ctr); wx1 
wx23A T7-9a {7L.63; 9S.07); wx1 
wx24A T8-9d {BL.09; 9S.16); wx1 
wx25A TB-9(6673) (8L.35; 9S.31); 

wx1 
wx26A T9-10{8630) (10L.37; 

9S.28); wx1 

--------- ---------------.------------------ -----------------------------------------------
>Date: Mon, 29 Jan 96 23:17:16 -0600 
> To: maize@uiuc.edu 
>Subject: FORM ORDER 
> 

wx28A TS-9(8386) (5L.87; 9S.13); 
wx1 

Wx30A T1-9c {15.48; 9L.22); Wx1 
Wx30B T1-9{4995) (1L.19; 9S.2); 

Wx1 
Wx30C T1-9(8389) (1L.74; 9L.13); 

Wx1 
Wx31A T2-9c (2S.49; 9S.33); Wx1 
Wx318 T2-9b {2S.18; 9L.22); Wx1 
Wx32A T3•9(8447) {3S.44; 9L 14); 

Wx1 
Wx32B T3-9(8562) (3L.65; 9L.22); 

Wx1 
Wx32C T3•9c (3L.09; 9L.12); Wx1 
Wx33A T4-9e (45.53; 9L.26); Wx1 
Wx33B T4-9(5657) (4L.33; 9S.25); 

Wx1 
Wx33C T4-9g (4S27; 9L.27); Wx1 
Wx34B TS-9(4817) (5L.06; 9S.07); 

Wx1 
Wx34C T4-9b (4L.9; 9L.29); Wx1 
Wle35A TS-9(8386) {SL.87; 9S.13); 

Wx1 
Wx35B T5-9a (5L.69; 9S.17); Wxl 
Wx35C T5-9d {5L.14; 9L.1); Wx1 
Wx36A TB-9(4778) (6S.8; 9L.3); 

Wx1 
Wx37A TS-9(8768) (6L.89; 9S.61); 

Wx1 
Wx37B T7-9(4363) (7ctr; 9ctr); 

Wx1 
Wx37C TB-9(4505) (6L.13; 9ctr); 

Wx1 
Wx38A T7-9a (7L.63; 9S.07); Wx1 
Wx388 T8-9d {BL.09; 9S.16); Wx1 
Wx3BC TB-9(6673) (BL.35; 9S.31); 

Wx1 
Wx39B T9-10b (10S.4; 9S.13); Wx1 

>Apparently-from: [Mozilla/1.0N (Windows)]@annex2-57.dial.umd.edu 
>At: 23:17:15 On: 29 Jan 1996 
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V. MAIZE GENOME DATABASE 
http://www.agron.missouri.edu/ 

The Maize Genome Database or MaizeDB is curated as a Sybase database at the University of Missouri, Columbia, MO. Information content is 
dynamic and updated daily. Accesses to the database at the Missouri location have approximately doubled over the past year from 20,000 to 
40,000/month, after subtracting an approximately equal number of accesses from commercial indexing services and local accesses. Over 3.5 
megabytes of information have been transferred over the Web in the past 2 years to some 38,000 different machines around the world. These 
accesses do not include records curated in other databases, such as sequence (GenBank), other genomes (yeast) and germplasm (GRIN), for 
which specific records may be seamlessly retrieved by users from within MaizeDB. Currently, 3,322 records in MaizeDB have 25,396 links to any 
of 18 external databases. SwissProt (Switzerland), Entrez(GenBank) and GRIN use links, as curated by the MaizeDB staff, to connect back to 
MaizeDB information. MaizeDB continues to provide four distinct front-ends for accessing the data electronically: gopher, World Wide Web, APT 
and ACEDB; a guest login account provides telnet access to all formats, in the event users do not have their own WWW or gopher browsing 
software. June 1996 records include 327 genetic maps, which form the basis for the integrated chromosome maps ; 7331 mapped loci, including 
400 quantitative trait loci; 4295map data entries, both recombination and map score data; 4658 probes; 2169 genetic/cytogenetic stocks; 20828 
locus variations; allozyme typing for 21 loci and 437 elite stocks; 4662 stock pedigrees; 8276 selected bibliographic references, indexed to other 
database objects including agronomic traits; 3280 researchers with address entries. 

New Data 
Total new records increased by 18% to over 118,000. Special WWW files of new data are maintained on the What's New page. Major new 
additions are high-lighted on the top line of our home page as they occur. Many of the files will also be listed and updated on the 'Of Interest to 
Maize Cooperators" page. Major new data include: 

1. Images : 2924 images of 1685 mutants in the Neuffer collection; hundreds of traits and pathogens/pests. We thank Gerry Neuffer, Lou Butler and 
Beth Bennett for their efforts with mutant images and CIMMYT for making their slides of traits, pathogens and pests available. These images will 
not be published in the 1996 edition of Mutants of Maize. Look for enhanced annotation of the images over the upcoming year. According to one 
commercial source, lnfoseek, http://guide.infoseek.com/, MaizeDB is an 'Amazing archive of images of mutant ears of corn". 

2. SSR's : 177 PCR primer mapping-pairs to detect simple sequence repeats (SSR). We are grateful for the careful compilations provided pre
publication by Lynn Senior (ARS, NC State), Emily Chin (Pioneer Hi-Bred), Julie Vogel (DuPont), and Mark Walton (Linkage Genetics). Information 
includes the primer sequences, the loci probed, with bin locations, and where provided, gel patterns, raw mapscores and annealing conditions. 
SSR map data are available for several previously unlocated genes, including fdx1, gln4, gst1, mt/1, nac1, ohp2, ole2, tlk1. 

3. 1996 Majze Genetics Conference Abstracts are part of the reference additions in the database, thanks to electronic submissions by the 
cooperators and especially, Paul Chomet, Bill Sheridan and Brenda Schilling. 

4. Genetic stocks: updated and new descriptions of 2169 seed stocks available from the Maize Genetics Cooperation Stock Center are entered 
into MaizeDB directly by Marty Sachs, who also facilitates links from GRIN to MaizeDB genetic stocks. 

5. Molecular markers are largely updated with thanks to Theresa Musket for preparation of electronic files with information about 3278 molecular 
probes available from the UMC RFLP laboratory. 

6. Continuing areas of update include (1) selected new references with indexing to MaizeDB objects; (2) record-to-record pointers to information 
in external databases that include SwissProt, GenBank, dbEST, Enzyme and GRIN; (3) raw map data, current and retrospective; (4) QTL 
experiments; (5) addresses of maize researchers. 

New Connections 
The Plant Genome Database (PGD), http://probe.nalusda.gov:8300/, now links back to the up-to-the-minute record, typos-and-all, at the Missouri 
server; use the "[MaizeDB-Sybase]" button at the top of each PGD record. PGD permits full-text queries across all plant species and provides a 
snapshot of the MaizeDB data as last extracted at Missouri into ACEDB format. 

Entrez, a frontend of GenBank, http://www3.ncbi.nlm.nih.gov/Entrezl, now links to PGD(AGIS) records, based on the links established at Missouri. 

Contacts 
The e-mail address for the database folks is db_request@teosinte.agron.missouri.edu. In general, technical matters are handled by Denis Hancock; 
all else by any of a small group that includes: Ed Coe, Pat Byrne, Georgia Davis, Mary Polacco, and Marty Sachs. 

Mary Polacco 
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VI. MAIZE PROBE BANK 

CLONE DISTRIBUTION FROM THE UMC/ARS-USDA RFLP LABORATORY 

The Maize Probe Bank at the University of Missouri/AAS-USDA, Columbia, Missouri, curates, maintains and distributes DNA probes 
for maize. Over 4500 probes are maintained in secured storage. Sequences for approximately 2500 are available in GenBank and other 
sequence databases. Probes are distributed upon request free of charge, limited to 30 probes in a 6-week period. Exception is made for 
the 90-probe "Core Marker" set, which contains probes for spaced loci covering the entire nuclear genome. Probes are provided as 
stabs. Following are the collections available for distribution: 

Clone Set 

Asgrow 
Brookhaven National Lab. 
California State University 
Iowa State University 
Mycogen Plant Genetics 
Pioneer Hi-Bred International 
Pioneer Hi-Bred International 
University of Arizona 
University of Missouri 
University of Missouri-Tripsacum 

Abbreviation 

asg 
bnl 
CSU 
isu 
agr 
php 
npi {#'s greater than 96) 
uaz {SC, 6C, 7C) 
umc 
tda 

No. Distributable 

85 
109 

1197 
136 
413 
161 

236 
1920 
238 
20 

Within these categories of clones we may not have or are not permitted to distribute all clones of that designation. We do not 
distribute npi clones with numbers less than 100, nor certain umc clones that were sent to us with restrictions. We distribute specific 
defined-function clones on a case-by-case basis. We do not have uaz clones in the 1 C, 2C, and 3C series, and are unable to provide these at 
this time. To be certain that a particular clone is available note the "Available From" line on the probe form of the maize database -
clones available from the UMC RFLP Laboratory will show T. Musket, who is the clone distribution coordinator. Clicking on T. Musket will 
give address and e-mail information. The easiest method to request clones is to use the probe request form directly from the maize 
database WWW homepage: 

URL http://teosinte.agron.missouri.edu. 

Please be certain to enter information in each field on the request form to aid our processing of your request. If you are unable to use 
the World Wide Web, send your request to Theresa A. Musket {address, phone and email in this Newsletter; FAX is 573-884-7850). 
Please provide your name, full mailing address, and email address if available. 

Over the last 2-3 years the number of clones for which we have responsibility has grown from a few hundred to greater than four 
thousand. Our resources, both personnel and financial, for maintenance and distribution of clones are very limited. For this reason we 
must limit requests to 30 probes in a 6-week period, and ask that you request only those clones necessary for your experiments. Because 
of concurrent research commitments we have difficulty answering clone requests as rapidly as we {and you) would like and would 
appreciate receiving requests for clones as far in advance of need as possible. Turnaround time is usually 2-4 weeks, depending upon the 
request load. 

During 1995, 203 requests were received from 21 countries, for over 5400 clones, including 35 core sets. 

Asgrow Seeds, Mycogen Plant Genetics and Pioneer Hi-Bred International have made generous donations of probes to the maize 
research community. The cooperation of individuals in making defined-function clones available is equally appreciated. We are grateful for 
partial support for the Probe Bank from the USDA-Agricultural Service, International Atomic Energy Agency, Asgrow Seed Co., 
Mycogen Plant Genetics, CIMMYT, and DeKalb Genetics Corp. 
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VII. NEW GENES - NEWLY MAPPED GENES -NEW MARKERS 

GENELIST: The genelist table in MNL 69:191-229 is supplemented below with a table of new, recently documented, and newly mapped 
genes, drawn up from the Maize Genome Database (MaizeDB - Section V). The table includes the symbol for the locus; the location in 'bins' 
(Working Maps - Section VIII); the locus name with a brief phenotypic description; and references to first reports or publications central to the 
designation of the locus. These references are given in a list following the Genelist, and are prefixed with "g" for genelist. 

The genelist is dynamic, and is increasingly refined and expanded in MaizeDB. The number in the following list is 297, and the total number of 
defined genes (in the broad sense including chromosome segments and transposable elements, among other entities) is nearly 1200. New loci 
identified by directly visible mutations, and new loci defined by sequences from clones with specific known functions, both contribute to this growth. 
Of the 297 listed, 142 have been mapped or have been placed to linkage group, bringing the total mapped to 833. 

Stocks of variants may be obtained from the Maize Genetics Cooperation Stock Center, as described in Section IV. Many variations (e.g., 
cob color; endosperm color; isozymes) occur naturally among generally available strains. For an increasing number of genes there is no present 
definition of variations in a gene product or trait identified to that gene, beyond RFLP polymorphisms. See Section VIII in this issue, Working Maps, 
for criteria used in designating genes based upon DNA evidence. By way of contrast, one impressive class of polymorphisms, the position shift loci 
(ps~ for polypeptides identified on 2D-PAGE, has been mapped by the INRA group and is being analyzed to define their functions. 

SYMBOL 
1L3 
5L5 
6L1 
8L7 
9L6 
aba1 

abc1 

abph1 

Ac9 
adc1 

adf1 

aec1 
aec5 
apx1 

apx2 

arf1 

asn1 

atp3 

bar 

barnase 

barstar 

ben2 
bet/1 

bet/2 
bet/3 
blk1 

bsd2 
bvp1 

caat1 

cap1 

BIN 
1.06 
5.06-5.07 
6.01-6.03 
8.06-8.09 
9.07-9.08 

2.03 

8.02-8.03 

2.09 

4.04-4.05 

7.04 

8.04 

Ed Coe and Mary Polacco 

NAME, PHENOTYPE 
G-band 3 on 1 L, cytological structure 
G-band 5 on 5L, cytological structure 
G-band 1 on 6L, cytological structure 
G-band 7 on BL, cytological structure 
G-band 6 on 9L, cytological structure 
abscisic stress protein homolog, root cDNA, sequence similar to plant abscisic acid stress and ripening 

proteins 
ABC(yeast) homolog1, endosperm cDNA 5C05H02(uaz263) similar to yeast ABC1 protein, may encode 

chaperonin, mitochondrial cytochrome b 
aberrant phyllotaxy1, decussate leaves and ear shoots (opposite at nodes) frequent; variable, 

recessive 
Activator9, isolated from wx-m9; 4563bp 
amino deoxychorismate synthesis homolog1, leaf cDNA csu329, single copy, similar to bacterial folate 

biosynthesis enzyme, may encode p-aminobenzoate synthase glutamine amidotransferase, GIi 
actin depolymerizing factor1, pollen cDNA similar to yeast cofilin, may encode actin depolymerizing 
factor 

aminoethyl-L-cysteine resistant1, dominant Aec1 resistant to lysine analog; elevated lysine content 
aminoethyl-L-cysteine resistant5, recessive aec5 resistant to lysine analog; elevated lysine content 
ascorbate peroxidase homolog, leaf cDNA csu238, partial 5' sequence similar to plant ascorbate 

peroxidase, may encode ascorbate peroxidase 
ascorbate peroxidase2, leaf cDNA, similar to plant cytosolic ascorbate peroxidase; sequence distinct 
from apx1, may encode ascorbate peroxidase 

ADP-ribosylation factor homolog1, cDNA similar to ARF family of GTP binding proteins, may encode 
GTP-binding, ARF family 

Zea asparagine synthetase homolog1, cDNA sequence 70% identical to asparagine synthetase from 
Pisum sativum, encodes asparagine synthetase 

ATP synthase3, vegetative meristem cDNA 7C02A03, encodes ATP synthase, mitochondrial, delta 
subunit 

Basta resistance, transgene, confers resistance to phosphinothricine (PPT, Basta); single or multiple 
copy transformants, encodes phosphinothricin acetyl transferase 

transgene, contains anther-specific promoter and encodes for enzyme barnase, which disrupts normal 
cell activity resulting in male sterility, corrected by barstar 

transgene, contains anther-specific promoter (as in barnase transgene) and a gene that inactivates 
barnase, rendering plant male fertile 

bentazon resistance2, dominant Ben2 with Ben1 confers resistance to bentazon herbicide 
basal endosperm transfer layer1, (aka bet1) tissue specific cDNA; multiple copies, single map site, 17 

amino acid extensin-like signal peptide, ser-(pro)4 motif, encodes BETL-1 
basal endosperm transfer layer2, cDNA, multiple copies, distinct from bet/1 sequence, encodes BETL-2 
basal endosperm transfer layer3, like bet/1, but not specific to basal endosperm transfer layer 
bladekiller1, progressive elimination of leaf blade, successive younger leaves most affected; generally 
tasselless 

bundle sheath development2, bundle sheath chloroplasts disrupted 
bovine virus protein homolog1, endosperm cDNA 5C04D07 (uaz207), similar to a bovine virus protein, 

may encode transcription factor 
CAAT box binding protein1, cDNA 5C05F12 similar to binding protein; single copy, may encode NF-YB, 

CCAAT-box binding protein subunit B 
calcium pump1, anoxic root cDNA, may encode calcium ATPase 

REF 
135 
135 
135 
135 
135 
5 

55 

50, 51, 
61 

93, 101 
14 

116 

7 
7 
14 

146 

150 

30 

56 

72 

147 

147 

20 
60 

160 
160 
121 

24 
54 

55,130 

139 
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car30 chilling acclimation response30, cDNA from cold-acclimated seedlings 4 
car757 cold acclimation response757, cDNA from cold acclimated seedlings 4 
cbp2 calmodulin binding protein2, partial root tip cDNA; fusion protein binds calmodulin; wind-induced; 1-2 113 

copies, encodes calmodulin binding protein 
cdpk2 calcium dependent protein kinase2, genomic and cDNA clones; genomic sequence similar to plant CDPK; 41 

pollen-specific expression; possibly two copies (Southern blot); antisense oligonucleotides disrupt 
pollen tubes, encodes calcium dependent, calmodulin independent protein kinase 

Cin4 Cinteot14, member of the class LINE-like non-viral retrotransposon elements, 50-100 copies, 27, 85 
preferentially located in regions approximately 44% GC 

ck2 2.08 casein kinase2, partial cDNA has three regions of identity to all other known casein kinase 2 alpha 37 
subunit genes, encodes casein kinase 

colonist1 colonist1, family of elements containing reverse transcriptase domain ( L/Nf-like); originally found in 85 
ACCase 81 and 82 genes; high sequence identity to largest (1.8kb) intron of sh2 

colonist2 colonist2, family of elements containing reverse transcriptase sequence ( LINE-like), similar to Cin4; 100- 85 
500 copies in genome; originally found in ACCase genes 81 and 82 (as an insertion in colonist1) 

cpn10 chaperonin10 candidate, etiolated leaf cDNA 6C02E06(uaz222) similar to microbial and plant 55 
chloroplast chaperonin 10 or groES protein, may encode chaperonin 10 

crs1 chloroplast RNA splicing1, chloroplast atpF RNA splicing 9 
crs2 chloroplast RNA splicing2, generally required for chloroplast RNA splicing, in contrast to crs1 9 
csa1 contact site A glycoprotein homolog1, leaf cDNA csu184 similar to Dictyostelium contact site A 14 

glycoprotein, may encode glycoprotein 
cyp2 4.01 cytochrome P450 2, seedling-specific; cDNA and genomic clones; gene-specific probe, encodes 44 

cytochrome P450 CYP71 
cyp3 4.01 cytochrome P450 3, cDNA, gene specific probe, encodes cytochrome P450 CYP71 44 
cyp4 4.01 cytochrome P450 4, seedling specific cDNA CYP71C3 (mpik7), gene-specific probe, encodes 44 

cytochrome P450 CYP71 
cyp5 4.01 cytochrome P450 5, seedling specific, cDNA CYP71C4 (mpki8), gene specific probe, encodes 44 

cytochrome P450 CYP71 
cyp6 7.02 cytochrome P450, leaf cDNA 6C06B11 (uaz338) similar to eggplant protein, SSA phi034, may encode 55,127 

cytochrome P450 
cys1 cysteine synthase1, vegetative meristem cDNA 7C02B02, may encode cysteine synthase, plastid 56 
dba1 4.10 DNA binding activity1, cDNA pAS10 with binding activity, similar to E5 protein; gene specific 138 
dba2 8.05-8.06 DNA binding activity2, cDNA pAS12 has binding activity; gene specific 138 
dba3 10.07 DNA binding activity3, cDNA pAS13 has binding activity; gene specific 138 
dba4 9.06 DNA binding activity4, cDNA pAS14 has strong binding activity and similarity to zinc finger proteins, 138 

single copy 
dek34 6.00-6.01 defective kernel34, reduced kernel 108 
dksB 2.02 defective kernel shootless8, from Mu screening; eliminates the development of the shoot pole during 134 

embryogenesis, encodes coproporphyrinogen Ill oxidase 
doppia duplicate, (Latin: to duplicate) discovered at the r1 locus, lies between S1 and S2 in the S complex; 155 

appears to have contributed to the formation of q and S2 from P element 
Dp9 9.00-9.03 Duplication 9, duplicated segment bearing c1 sh1 wx1 loci, repeated in reversed order 92 
Os1 Dissociation1, isolated from Adh1-Fm335; deletion of virtually all of Ac except the 11bp inverted 104,141 

sequence at ends, which determines response to Ac and excision 
Os2 Dissociation2, isolated from Adh1-2F11; 1319bp 38, 39, 

98 
Os6 Dissociation6, isolated from wx-m6; deletion of 2521 bp of Ac 38, 42, 

94 
Os9 Dissociation9, derived from wx1-m9; 4369bp, deletion of 194bp from Ac9 38, 93 
DsA DissociationA, transgenic, artificial Os-like element 140 
Ef1 10.04 endosperm factor1, segment affecting endosperm development by paternal imprinting 78, 79 
Ef2 10.04 endosperm factor2, segment affecting endosperm development by paternal imprinting 78, 79 
Ef3 10.04 endosperm factor3, segment affecting endosperm development by paternal imprinting 78, 79 
Ef4 10.06-10.07 endosperm factor4, segment affecting endosperm development by paternal imprinting 79 
eif2 elongation initiation factor2, etiolated leaf cDNA 6C02E11 (uaz224) similar to elF-2 gamma chain, may 55 

encode eucaryotic initiation factor 2, gamma subunit 
eif4 eucaryotic initiation factor4, cDNA; one of two with map sites on chr 5 and chr 6, encodes eucaryotic 88 

initiation factor 4A 
En/102 Enhancer! 102, non-autonomous transposition, deletion derivative of En 1 125 
eoh1 10.03 E. coli origin of replication homolog1, genomic sequence pAS3 similar to E. coli origin ; gene specific 138 

probe 
ers1 enhancer of rough sheath1, enhances Rs1-0 phenotype; alone affects leaf dimensions (shorter, more 16 

lanceolate) but no effect on ligule or lateral veins 
fat1 fatty acyl thioesterase1, leaf cDNA csu817 similar to plant fatty acid metabolism protein, may encode 15 

acyl-(acyl carrier protein) thiolesterase 

100 



fdx1 6.00 ferredoxin1, chloroplast, light induced, N-terminal amino acid sequence of mature protein, cDNA 53,127 
sequence, SSA phi075, encodes ferredoxin 

fht1 2.01-2.02 flavanone 3-hydroxylase1, (aka f3h) single copy cDNA similar to Antirrhinum homolog, may encode 34 
flavanone 3-hydroxylase 

gbf1 G-box binding factor, anoxia induced, nuclear, basic-region leucine zipper protein; low copy number; 33 
cDNA clone, encodes G-box binding factor 

gef1 glossy early flowering1, recessive gef1 eliminates first leaves 149 
gfa1 glucosamine fructose-6-phosphate aminotransferase1, endosperm cDNA 5C01 G05 (uaz309) similar to 55 

rate limiting enzyme of hexosamine synthesis, may encode glucosamine fructose-6-phosphate 
aminotransferase 

g/25 5.00-5.04 glossy25, like g/1 but seedlings small, twisted 123 
g/26 glossy26, like g/1 123 
g/7 4.00-4.05 glossy?, (was g/12) like g/1 40,136 
gln2 1.09-1.10 glutamine synthetase2, cytosolic, GS1-2 isoform, root specific, gene specific cDNA probe, 6-member 76, 118, 

nuclear gene family, encodes glutamate-ammonia ligase, cytosol 133 
gln4 5.07 glutamine synthetase4, cytosolic GS1-3 isoform, major species in both root and leaf, gene specific cDNA 118, 133 

probes, 6-member nuclear gene family; SSA phi085, encodes glutamate-ammonia ligase, cytosol 
gln5 4.04-4.06 glutamine synthetase5, cytosolic GS1-4 isoform, major species in both leaf and root, gene specific cDNA 118, 133 

probe, 6-member nuclear gene family, encodes glutamate-ammonia ligase, cytosol 
gln6 1.01-1.02 glutamine synthetase6, cytosolic GS1-1 isoform, gene specific cDNA probe, 6-member nuclear gene 118, 133 

family, encodes glutamate-ammonia ligase, cytosol 
glu2 beta-glucosidase2, cDNA produces higher activity in transgenic tobacco; shares 20 amino acids with an 25 

N-terminal sequence reported for membrane-bound beta-glucosidase, encodes beta glucosidase, p60 
gly1 glycine1, leaf cDNA 7C04A02 similar to a fungal and E.coli enzyme used in glycine metabolism, may 56 

encode glycine hydroxymethyltransferase 
go/1 4.08 goliath homolog1, leaf cDNA ·csu216 single copy, similar to Drosophila Goliath protein, may encode 14 

transcription factor 
gos2 7.03-7.04 homolog to rice gos2, leaf cDNA csu209, single copy, 5' sequence similar to constitutive rice gos2, may 14 

encode translation factor, SUl1 family 
gst2 glutathione S-transferase2, safener-induced; heterodimer, encodes glutathione S-transferase II, 27 kDa 58 

subunit 
gst4 3.05 glutathione-S-transferase4, cDNA sequence, transgenic expression, single or low copy gene, sequence 52,127 

in conflict with earlier sequence reported for gst3 (possible allele of gst3), SSA phi073, encodes 
glutathione S-transferase 

gtr1 glutamyl-tRNA reductase1, leaf cDNA csu839, plastid porphyrin biosynthesis, encodes glutamyl-tANA 15 
reductase 

gzr1 7.05-7.06 gamma zein modifier1, enhances gamma-zein accumulation; possibly identical to 015; with other loci, 81 
modifies hardness of o2 endosperm 

heat 7.04 histocompatibility antigen homolog1, endosperm cDNA 5C04C07 (uaz199), similar to human 54 
histocompatibility antigen, single copy, may encode glycoprotein 

hmg1 high mobility group protein1, cDNA sequence isolated by immunoscreening, homologous to vertebrate 49 
HMG1 family, single or low copy gene, encodes high mobility group a protein 

hmp1 1.00-1.04 humpback1, proliferation of sheath just beneath auricle results in bulged sheath, more apparent above 124 
the ear node 

Hopscotch Hopscotch, copia-like retrotransposon in wx1-Kwith single open reading frame 159 
hox3 3.07 homeobox3, cDNA ZmHox2a, meristem specific, duplicate of hox4, based on sequence and expression; 67 

sequence distinct from knotted related homeobox genes, encodes HOX2a, transcription factor 
candidate 

hox4 8.09 homeobox4, cDNA Zmhox2b, meristem specific, duplicate of hox3 based on sequence and expression, 67 
encodes HOX2b, transcription factor candidate 

hsk1 9.03 high-sulfur keratin homolog1, endosperm cDNA 5C04804 (uaz144), similar to high-sulfur keratin; relation 54 
to uaz144a (bin 4.06) and uaz144b (bin 5.06) unclear, encodes high sulfur keratin homolog 

ht4 1.03-1.06 Helminthosporium turcicum response4,. chlorotic halo on infection by Exserohilum turcicum 28 
idc1 iron deficiency candidate1, endosperm cDNA 2C02A04 (uaz80) similar to barley sequences D10058, 55 

D37796 
/GS 6.01 intergenic spacer in NOR, spacer region between transcribed rDNA units; interacts with high-mobility 59 

group (HMG) nuclear proteins 
imd1 isopropylmalate dehydrogenase1, vegetative meristem cDNA 7C03E11 similar to potato sequence 56 

X67310, with less similarity to various mammalian isocitrate dehydrogenases, may encode 
isopropylmalate dehydrogenase 

incw1 5.04 cell wall invertase1, full-length cDNA, similar to tobacco and carrot cell-wall invertase; Northerns specific 129 
to cell suspension and developing endosperm 28-32 OAP; expressed protein cross-reacts with 
antibodies to carrot cell-wall invertase; low copy number, encodes invertase, cell wall 

ivr1 invertase1, cDNA, genomic clones similar to soluble plant invertase, encodes invertase 162 
ivr2 5.03 invertase2, cDNA for soluble invertase, single band on Southerns, encodes invertase 68 
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K10 10.07 abnormal 10, heterochromatic alternative end of long arm of chromosome 10 found in some strains; 80 
neocentric activity distorts segregation of knobs and of genes linked to them 

K3L 3.07 knob on 3L, heterochromatic structure found in most strains, varies in size 35 
knox1 1.00-1.01 knotted related homeobox1, class 2 root homeobox; cDNA and genomic clones; gene-specific probe 65 
knox10 5.02-5.03 knotted related homeobox10, class I homeobox, gene-specific probe; cDNA and genomic clones 65 
knox11 8.05 knotted related homeobox11, class I homeobox; cDNA and genomic clones; sequence and expression 65 

similar to lg3 and knox5 
knox2 9.03 knotted related homeobox2, sequence similar to knox6 and knox7; gene specific probe; cDNA and 65 

genomic clones 
knox5 8.05 knotted related homeobox5, class I homeobox; cDNA and genomic clones; gene-specific probe; 65 

sequence and expression similar to lg3 and knox11 
knox6 5.04 knotted related homeobox6, similar to knox2 in sequence and expression; cDNA and genomic clones; 65 

gene specific probe 
knoxl 4.09-4.10 knotted related homeobox7, sequence and expression similar to knox6; gene specific probes 65 
knoxB 1.10-1.11 knotted related homeobox8, cDNA, shoot meristem and developing stem specific, similar in sequence 62, 65 

and expression pattern to kn 1 
kpp1 kinase associated protein phosphatase1, cDNA similar to Arabidopsis KAPP sequence, encodes kinase 21 

associated protein phosphatase 
les28 lesion mimic28, dominant Les28, leaf lesions enhanced by strong sunlight and cold 90 
/heat light harvesting complex A 1, leaf cDNA csu800 similar to photosystem I antenna protein, encodes 15 

chlorophyll alb binding protein type II LHCI 
/hcb4 5.07 light harvesting complex alb protein4, leaf cDNA csu227, single site, encodes light-harvesting 14 

chlorophyll alb binding protein 
LINE Long Interspersed Nuclear Elements, non-viral retrotransposon family (includes Cin4, colonist1 & 2) 85 
lss1 4.10 lanosterol synthase1, leaf cDNA csu265, encodes oxidosqualene-lanosterol cyclase 14 
ltf1 5.03-5.04 lysr transcription factor homolog1, endosperm cDNA 5C02805 (uaz275) single copy, similar to lysr family 54 

of transcription regulators, may encode lysr transcription factor 
Maize 1 copia-like retrotransposon isolated by PCR, may encode reverse transcriptase 154 
Maize 2 copia-like retrotransposon, isolated by PCR, may encode reverse transcriptase 154 
MARladh1 1.10 matrix associated region, near adh1, DNA region at 5' end of adh1, distal to the promoter region with 6 

high affinity for the nuclear matrix, prepared from nuclei of young maize seedlings 
met1 methionine synthase homolog1, leaf cDNA csu194 similar to E coli metE, may encode methionine 14 

synthase 
mha2 plasma-membrane H+ATPase2, cDNA sequence similar to plant plasma-membrane [H+]-ATPase and 128 

distinct from mha1, encodes H(+)-ATPase, plasma membrane 
rrt/1 macrohairless1, reduced complement of macrohairs on adaxial surface of leaf blade; with Rld1-O, 71 

abaxial macrohairs characteristic of Rld1 are absent 
mr/1 midrib1ess1, loss of midrib in juvenile leaves, occasionally in adult leaves 105 
ms25 male sterile25, tapetal cells abnormal, contain lipid bodies; microspores vacuolate prematurely after 84 

release from the tetrad, then collapse 
ms26 male sterile26, tapetal cells abnormal, die early; microspores vacuolate early and abort after the tetrad 84 

stage 
ms27 male sterile27, description pending 2, 17 
ms45 9.00-9.08 male sterile45, abnormal microspore wall formation, tassel specific, cDNA clone, may encode strictosidin 3 

synthase 
msf1 mRNA splicing factor homolog1, leaf cDNA csu363 similar to animal mRNA splicing factor, may encode 14 

mRNA splicing factor U2AF 
rrdl1 male sterile homolog1, etiolated leaf cDNA 6C02E02(uaz195) similar to Arabidopsis male sterile locus, 55 

ms2 
mss1 MSS1 homolog, leaf cDNA csu834 similar to human protease, may encode ATP-dependent protease, 15 

MSS1 
mta1 1.09-1.10 mouse transplantation antigen homolog1, endosperm cDNA 5C04D09 (uaz208) single copy, similar to 54 

Arabidopsis homolog of a mouse transplantation antigen, may encode glycoprotein 
mt/1 4.01 metallothionein homolog1, genomic clone, transcriptional and translation start sites mapped, Northern 32 

blots, similar to other class-I metallothioneins, root specific; SSR phi072, may encode metallothionein 
ml/2 metallothionein2, seed cDNA sequence similar to wheat sequence (SwissProt P30569) and distinct from 158 

mt/1, may encode Ee metallothionein class II protein 
mtr1 methyltryptophan resistant1, dominant variation conveys resistance to 5-methyl tryptophan 63 
Mu2 Mutator2, contains an additional 385 bp insertion not found in Mu1 19 
Mu3 Mutator3, terminal inverted repeats have 80-90% identity with TIRs of Mu1, but no sequence similarity 102 

internally with other Mu elements 
Mul Mutator7, cloned by homology to Mu1 termini 19 
MuA MutatorA, isolated by homology to Mu1 TIRs 142 
nac1 10.04 NaCl stress protein1, endosperm cDNA 5C01G10 (uaz250, SSR phi084), similar to wheat salt-stress 54 

peptide, may encode salt stress protein 
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nad2 NADH dehydrogenase2, vegetative meristem cDNA 7C02A11, encodes NADH:ubiquinone 56 
oxidoreductase, PSST subunit 

NCS7 nonchromosomal stripe?, aborted kernel sectors; photosystem I deficient; maternally inherited 143 
ndk1 7.03-7.04 nucleotide diphosphate kinase1, leaf cDNA csu269 single copy, encodes nucleotide diphosphate kinase I 14 
nfy2 NF-YB homolog, single PCA-isolated sequence with strong homology to CCAAT-box binding protein 77 

subunit, encodes NF-YB, CCAAT-box binding protein subunit B 
nii2 nitrite reductase2, cDNA homologous to spinach gene, induced by nitrate, putative chloroplast transit 70 

peptide, two copies, encodes ferredoxin--nitrite reductase 
odo1 alpha keto dehydrogenase candidate1, etiolated leaf cDNA 6C02A09 (uaz215) similar to microbial TCA 55 

cycle enzyme, may encode alpha-ketoglutarate dehydrogenase 
oec17 oxygen evolving complex, 17kDa homolog, leaf cDNA csu229 similar to plant OEC17, encodes oxygen 14 

evolving complex, 17kDa subunit 
ohp2 5.00 opaque2 heterodimerizing protein2, cDNA sequence, SSAs nc007, phi024, encodes o2 heterodimerizing 109, 

protein 126 
ole1 2.04-2.05 oleosin1, major protein from lipid bodies, cDNA and genomic clones, encodes oleosin, 16 kDa 74,148 
ole2 5.02 oleosin2, embryo lipid body protein; peptide, cDNA and genomic sequences; SSA phi113, encodes 74, 75 

oleosin, 17 kDa 
ole3 5.03-5.04 oleosin3, embryo lipid body protein, peptide, cDNA and genomic sequences, encodes oleosin, 18 kDa 74, 75, 

110 
oro4 orobanche4, like oro1 86 
ost1 oligosaccharide transferase1, vegetative meristem cDNA 7C02F04 similar to an integral endoplasmic 56 

reticulum protein, may encode dolichyl-diP-oligosaccharide protein glycosyl transferase 
pa/1 5.05 phenylalanine ammonia lyase candidate, leaf cDNA csu156 similar to rice phenylalanine ammonia lyase, 64 

single copy, encodes phenylalanine ammonia lyase 
pat phosphinothricin acetyl transferase, synthetic gene sequence derived from the Streptomyces 103 

viridochromogenes gene; Mendelian segregation of transformants, encodes phosphinothricin acetyl 
transferase 

pcna1 proliferating cell nuclear antigen1, full-length cDNA; predicted protein shows high similarity to rice, 83 
human, others, encodes proliferating cell nuclear antigen 

pcr1 protochlorophyllide reductase1, leaf cDNA csu349 similar to plant protochlorophyllide reductase, 14 
encodes NADPH protochlorophyllide oxidoreductase 

pdk1 6.05 pyruvate, orthophosphate dikinase1, cDNA, genomic and peptide sequences; microsatellite mapped 46,126 
(SSAs phi025, phi078, phi081; nc012 ); cytosolic or plastidic, dependent on transcript processing, 
encodes pyruvate, orthophosphate dikinase 

pex2 pollen, extensin-like2, clone like pex1, encodes hydroxyproline-rich glycoprotein 117 
pfk1 phosphofructose kinase1, vegetative meristem cDNA 7C02A06, encodes 6-phosphofructose-1-kinase, 56 

beta subunit 
pgd1 6.01 6-phosphogluconate dehydrogenase1, electrophoretic mobility, null alleles occur; cytosolic; dimeric, 14,48 

intra/interlocus hybrid bands occur; cDNA csu262 single copy, encodes 6-phosphogluconate 
dehydrogenase 

pks1 polyketide synthesis homolog1, vegetative meristem cDNA 7C02F01 similar to an acyl CoA condensing 56 
enzyme, may encode 6-deoxyerythronolide B synthase I 

pld1 phospholipase D1, cDNA clone, amino acid sequence 90% similar to rice PLD, encodes phospholipase D 145 
p/s1 phospholipid synthesis1, endosperm cDNA complements E. coli temperature sensitive mutant in plsC, 23 

encodes 1-acyl-sn-glycerol-3-phosphate acyltransferase 
pop1 1.04-1.05 putative organelle permease1, endosperm cDNA 5C02F05 (uaz 282)single copy, similar to yeast 54 

putative mitochondrial carrier protein, may encode organellar permease 
ppo1 polyphenol oxidase1, vegetative meristem cDNA 7C02D02, may encode polyphenol oxidase 56 
ppp1 5.07 pyrophosphate-energized proton pump1, endosperm and leaf cDNA's 5C02E08 (uaz280), 14, 54 

zcsu220; single copy; similar to plant vacuolar pyrophosphate-energized ATPase, may encode 
pyrophosphate-energized proton pump, vacuolar 

prc1 9.02 proteasome C9 homolog1, endosperm cDNA 5C02A05 (uaz237), similar to proteasome subunit, may 54 
encode proteasome (endopeptidase) component C9 

prc2 proteasome component2, vegetative meristem cDNA 7C02B10, may encode proteasome component 56 
C11 

psei2 cystatin2, cDNA expressed in E. coli inhibits cysteine proteinases; sequence and gene product activity 
distinct from psei1, encodes cysteine proteinase inhibitor II 

ps/1 2.07 position shift locus1, psl1 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/3 9.02 position shift locus3, psl3 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/4 3.05 position shift locus4, psl4 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/5 3.01-3.03 position shift locus5, psl5 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 
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ps/6 1.06-1.07 position shift locus6, psl6 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/7 . 5.03 position shift locus?, psi? polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/8 5.04-5.05 position shift locus8, psl8 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/9 10.03 position shift locus9, psl9 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/10 3.04 position shift locus10, psl10 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/11 2.04-2.06 position shift locus11, psl11 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/13 1.12 position shift locus13, psl13 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/15 6.02-6.03 position shift locus15, psl15 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/16 3.06 position shift locus16, psl16 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/18 1.06 position shift locus18, psl18 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/19 8.04-8.05 position shift locus19, psl19 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/20 5.03 position shift locus20, psl20 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/21 5.05 position shift locus21, psl21 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/22 9.04 position shift locus22, psl22 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis · 

ps/23 7.03 position shift locus23, psl23 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/24 1.10 position shift locus24, psl24 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/25 1.04 position shift locus25, psl25 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/26 4.11 position shift locus26, psl26 polypeptide altered, revealed by 2-dimenslonal polyacrylamide gel 31 
electrophoresis 

ps/27 7.03-7.04 position shift locus27, psl27 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/28 3.05 position shift locus28, psl28 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/29 6.04-6.05 position shift locus29, psl29 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 

ps/31 2.05-2.06 
electrophoresis 

position shift locus31, psl31 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/32 2.07 position shift locus32, psl32 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/33 1.12 position shift locus33, psl33 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/35 4.03-4.04 position shift locus35, psl35 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/38 8.02 position shift locus38, psl38 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/39 5.04-5.05 position shift locus39, psl39 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/42 8,01 position shift locus42, ps142 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/43 5.03 position shift locus43, psl43 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/44 1.11 position shift locus44, psl44 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/45 4.03-4.05 position shift locus45, psl45 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/46 9.07 position shift locus46, psl46 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/47 3.02-3.04 position shift locus47, psl47 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 
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ps/48 10.07 position shift locus48, psl48 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

ps/75 4.09-4.10 position shift locus75, psl75 polypeptide altered, revealed by 2-dimensional polyacrylamide gel 31 
electrophoresis 

pur1 pollen ubiquitin regulator1, dominant regulator of ubiquitin level 96 
px10 peroxidase10, anodal; active in scutella, seedling roots, tassel spikelets, pollen, encodes peroxidase 22, 66 
px12 peroxidase12, root-specific in planta; occurs in callus tissues and somaclones, encodes peroxidase 22, 66 
q 10.06 non-functional r1 component, in the Scomplex, structure q-1S-S2(i.e., S1 and S2 elements are in 115 

reverse orientation); synapses with P, S1, S2 
rab15 5.03 responsive to abscisic acid15, nucleolar; cDNA and genomic sequence, cDNA isolated from dry embryo; 47 

SSR phi00B, encodes MA16 RNA binding protein 
rab28 5.03 abscisic acid-responsive28, cDNA and genomic clones, inducible by ABA in embryos and young leaves 107 

and by water-stress in leaves; similar to cotton LeaD-34 
rad1 RAD1 DNA repair protein homolog, endosperm cDNA 5C10D10 similar to yeast RAD1, may encode DNA 55 

repair protein, RAD1 homolog 
rad51 recombination and DNA repair51, cDNA similar to yeast RAD51, may encode RAD51 97 
rap1 retinoblastoma-associated protein homolog1, etiolated leaf cDNA 6C02C02 (uaz191) similar to human 55 

cell cycle protein, may encode retinoblastoma protein (RB) family member 
rfB restorer of fertility8, dominant RfB substitutes for Rf1 in fertility restoration 36 
ring 3 3.08-3.09 ring carrying A 1-b, Sh2, Wt 9; losses in endosperm or seedling tissue are recognizable by phenotypic 137 

losses of these dominants 
ring 9S 9.00-9.01 ring carrying Wd1, Yg2, and C1-I; frequent losses recognizable in endosperm in presence of C1, in 95,114 

plants if wd1 or yg2 
rip2 7.04 ribosome-inactivating protein2, cDNA; genomic sequence produces RIP protein in E. coli, encodes 11 

ribosome inactivating protein 
rnp1 2.08 chloroplast RNA binding protein1, leaf cDNA csu17, similar to RNA binding proteins, encodes chloroplast 12 

RNA binding protein 
rpa40 acidic ribosomal protein P40, vegetative meristem cDNA 7C02D05 similar to cytoplasmic ribosomal 56 

protein, may encode 40S ribosomal protein, P40 
rp/15 60S ribosomal protein L 15, leaf cDNA csu364 similar to eucaryotic 60S ribosomal protein L15 (L10, 14 

YL 10), may encode ribosomal protein L15, 60S 
rp/16 ribosomal protein L 16, precursor mRNA stored in embryo axes, encodes ribosomal protein L 16 18 
rp/3 ribosomal protein L3, precursor mRNA stored in embryo axes, encodes ribosomal protein L3 18 
rp/44 ribosomal protein L44, vegetative meristem cDNA 7C02A07, encodes 60S ribosomal protein L44 56 
rps12 ribosomal proteinS12 (homolog), endosperm cDNA 5C08C03 similar to rodent ribosomal protein, may 55 

encode ribosomal protein S12 
rps21 40S ribosomal protein S21, endosperm cDNA, similar to rice 40S ribosomal protein S21, encodes 40S 55 

ribosomal protein S21, cytoplasmic 
rps27 ribosomal protein S27, endosperm cDNA 5C09A02, may encode 40S ribosomal protein S27 55 
rps28 ribosomal protein S28, endosperm cDNA 5C01A05(uaz146) similar to animal 40S ribosomal protein S28, 55 

encodes 40S ribosomal protein S28, cytoplasmic 
rps4 ribosomal protein S4, vegetative meristem cDNA 7C02E04 similar to cytoplasm ribosomal protein, 56 

encodes 40S ribosomal protein S4 
rps6 ribosomal proteinS6, mature mRNA stored in embryo axes, encodes 40S ribosomal protein S6, 18 

cytoplasmic 
,test root deficient1, root system drastically reduced, solely to a primary root, yet plants can be carried to 57 

seed 
S1 10.06 subcomponent of S region of r1 S complex, arranged q-1S-S2 (S1 reversed relative to S2); synapses 155 

with P, q, S2 
S2 10.06 subcomponent of Scomplex of r1, arranged q-1S-S2(S1 and S2 in reverse order); synapses with P, q, 155 

and S1 
sam1 10.04 .. 10.05 S-adenosylmethionine decarboxylase1, single copy leaf cDNA csu217; aka csu6b, may encode S- 14 

adenosylmethionine decarboxylase 
sbp1 sedoheptulose bisphosphatase1, leaf cDNA csu813 similar to plant Calvin cycle enzyme, may encode 15 

sedoheptulose bisphosphatase 
se1 2.10 sugary-enhancer1, high sugar content with su1; light yellow endosperm; freely wrinkled in 111677a 43 
sed1 senescence-diminished1, mRNA differentially diminished in early-vs. late-senescing lines; similarity to ATP 132 

sulfurylase mRNA of Arabidopsis, may encode sulfate adenyltransferase 
sed2 senescence-diminished2, mRNA differentially diminished in early-vs. late-senescing lines 132 
see1 senescence-enhanced1, mRNA differentially enhanced in late-vs. early-senescing lines; similarity to rice 132 

oryzain gamma (cysteine protease), may encode cysteine protease 
see2 senescence-enhanced2, mRNA differentially enhanced in late-vs. early-senescing lines; similarity to 132 

castor bean vacuolar processing enzyme (cysteine protease), may encode protease, vacuolar 
processing 

see3 senescence-enhanced3, mRNA differentially enhanced in late-vs. early-senescing lines; similarity to 132 
maize pyruvate, o,:Phosphate dikinase, may encode pyruvate, orthophosphate dikinase 
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see4 senescence-enhanced4, mRNA differentially enhanced in late-vs. early-senescing lines; similarity to 132 
maize ferredoxin I, may encode ferredoxin 

semt 9.00-9.03 semaphore1, small kernels with reduced germination; plants brachytic with leaves that droop at maturity 119,120 
sert seryl-tRNA synthetase1, etiolated leaf cDNA 6C02G11 (uaz236) similar to yeast tRNA ligase, may 55 

encode seryl-tRNA synthetase 
sigma sigma subcomponent of S complex of rt, region between S1 and S2, unrelated to them or to P but 155 

showing some homology to doppia 
Sleepy Sleepy, element of 328bp, found as an insertion into an exon in d3-4 161 
snrt4 small nucleolar RNA 1, nucleolar; possible polycistronic cluster of U14 units; sequence similar to yeast and 73 

mouse counterparts, encodes U14 small nucleolar RNA 
sprt signal recognition particle receptor homolog1, endosperm cDNA 2C07F04(uaz8) similar to alpha subunit 55 

of animal signal recognition particle receptor, may encode signal recognition particle receptor, alpha 
subunit 

sps2 3.05 sucrose phosphate synthase2, leaf cDNA csu328, sequence similar to spst, encodes sucrose-phosphate 14 
synthase 

taft transcription associated factor1, low copy, leaf cDNA csu38 similar to human transcription initiation 12 
factor subunit, may encode TFIID subunit 

tapt translocon-associated protein homolog1, vegetative meristem cDNA 7C02D06, similar to endoplasmic 56 
reticulum protein, may encode RAP, delta subunit 

tctt translationally controlled tumor1, vegetative meristem cDNA 7C02C06 similar to protein conserved in 56 
yeast, plants and mammals, encodes TCT1 

that 3.04 thylakoid assembly1, reduced polypeptides of photosystem 11, photosystem I, cytochrome bf; normal 8 
coupling factor, normal RUBISCO; missing polypeptides appear to be synthesized normally 

tha3 thylakoid assembly, like tha2, presumed not allelic 10 
thrt 3.08 threonine synthase homolog1, leaf cDNA csu189 similar to bacterial threonine synthase; single copy, may 14 

encode threonine synthase 
tlkt 6.07 tousled protein kinase1, endosperm cDNA 5C04A03 (uaz130; SSA phi070), similar to Arabidopsis 54,127, 

protein kinase, TOUSLED, encodes Lea Group 3 protein MLG3 157 
tnpA transposase A, positive and negative regulator and transposition elicitor of Spm, encodes TnpA 122 
to/at Iola protein homolog1, endosperm cDNA 5C05A03 (uaz254) similar to E. coli TOLA protein, an inner 55 

membrane, colicin transport protein, may encode membrane permease 
TouristA TouristA, elements with frequent 5'-GGATT-3' repeats, generally small, 133 bp average 163 
TouristB TouristB, elements similar to TouristA but also contain internal domain I, subterminal poly(A).poly(T) tract 26 

and one copy of 5'-TCACATCGAAT-3' located 39-50 bp from a terminus 
TouristC TouristC, elements similar to TouristB but have an additional domain, I' 26 
TouristD TburistD, elements with a distinct, although related, terminal inverted repeat and with variable length 26 
trmt thioredoxin M1, cDNA with conserved active site, encodes thioredoxin M 144 
trpt tryptophan synthase1, genomic sequence; pith preferential cDNA, complements E. coli trpA, encodes 69 

tryptophan synthase alpha subunit 
trut 3.04-3.10 tassels replace upper ears1, upper ear branches tassel-like, tillers bear ears 131 
tslt twin shoot line1, twin shoots, heritability low and variable, apparently normal number of chromosomes, 45 

dormant embryo has twin apical meristem, but single root primordium 
tua4 5.01-5.02 alpha tubulin4, belongs to alpha tubulin subfamily I, with tuat and tua2; gene specific cDNA probe, 151 

encodes alpha tubulin 
tua6 7.04 alpha tubulin6, alpha tubulin subfamily 11, gene specific cDNA probe, encodes alpha tubulin 151 
tub6 3.06 beta tubulin6, cDNA sequence, gene specific probe, encodes beta tubulin 152 
tubl 9.04 beta tubulin7, cDNA sequence, gene specific probe, encodes beta tubulin 152 
tubgt gamma-tubulin1, full-length cDNA; deduced amino acid sequence shows high similarity to this tubulin of 82 

Arabidopsis and others, encodes gamma tubulin 
ucet 1.08 ubiquitin conjugating enzyme1, endosperm cDNA 2C06C11 (uaz102), similar to plant ubiquitin conjugating 54 

enzymes, encodes ubiquitin conjugating enzyme 
ugp1 2.07 UDP-glucose pyrophosphorylase1, endosperm cDNA 5C02H07 (uaz194), similar to potato UDP-glucose 54 

pyrophosphorylase, encodes UDP-glucose pyrophosphorylase 
vpt3 10.04-10.07 viviparous13, viviparous embryo, necrotic seedling 91 
vpp2 vacuolar proton pump2, eliolated leaf cDNA, 5' sequence similar to plant vacuolar ATPase, subunit 8, 55 

encodes vacuolar (H+)-ATPase, subunit B 
vspt 9.03 vegetative-specific protein homolog1, endosperm cDNA 5C01 C06 (uaz246), similar to slime mold 54 

vegetative protein, may encode vegetative-specific protein 
xett 5.03 xyloglucan endotransglycosylase homolog1, cDNA clone (cultivar Berkeley Fast); continuous anaerobic 106 

accumulation ·01 mRNA through 72 h, may encode xyloglucan endotransglycosylase 
ztc(zp22) 4.02 zein cluster, 22 kDA alpha zein cluster defined by single Sal1 restriction fragment, encodes zein-1 (alpha 29 

zein) 
ZEAR Zea specific repeat, family of 253 bp elements, specific to the genus Zea, with about 2500 copies in both 112 

maize and teosinte 
zemt Zea endosperm MADS box1, genomic clone; distinct leaf and endosperm transcripts attributed to 99 

alternative splicing; contains zagf-like MADS box, may encode transcription factor (MADS box) 
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zimt Zea IM30 protein homolog1, leaf cDNA csu159 similar to pea IM30 protein, may encode chloroplast 
membrane targeting protein 

13 

156 
87 

zlfyt 
zlpt 

Zea leafy homolog1, genomic sequence similar to Arabidopsis floral meristem determining locus. Jfyt 
zeamatin-like prolein1, cDNA selected with Arabidopsis thaumatin-like protein clone; antifungal; mRNA 

and protein highest in endosperm at 4 weeks; one band in Southerns, expressed in transgenic 
Arabidopsis and tomato; closely similar to alpha-amylase/trypsin inhibitor, encodes thaumatin-like 
protein 

ZLRS Zea long repetitive sequence, Zea specific, 9kbp repetitive elements with 1350-1700 copies/haploid 112 
genome 

zp t 9/22(pms2) 
zp22(zAt) 
zp22. t 

4.05 
4.09-4.11 
4.04 

alpha zein pms2, genomic sequence pMS2, SSA ph/096, encodes zein-1 (alpha zein) 
zein cluster zA 1, 22 kDa alpha zein cluster, encodes zein-1 (alpha zein) 

111, 127 
153 
89,127 
100 

zein protein 22.1, cDNA pZ22.1, SSA phi074, encodes zein-1 (alpha zein) 
zrp2 Zea root protein2, cDNA expressed in roots and stems 
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Following are two tables, A RANDOM SET OF MAIZE SIMPLE SEQUENCE REPEAT MARKERS, provided by Graziana Taramino 
and Scott Tingey of DuPont (see Genome 39:277-287), and a COMBINED TABLE OF SSR LOCI ,developed from information of Taramino and 
Tingey; of Senior et al., MNL 70:50-54; and of Burr and Walton, in order by approximate bin locations. These data are maintained in MaizeDB. 
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A RANDOM SET OF MAIZE SIMPLE SEQUENCE REPEAT MARKERS 

--Graziana Taramino* and Scott Tingey, DuPont Agricultural Products, P.O. Box 80402, Wilmington, DE 19880-0402 
*to whom correspondence should be addressed -- Current address: Dipartimento di Genetica e Biologia Dei Microrganismi, Universita' degli Studi 
di Milano, Via Celoria 26, 1-20133 Milano, Italy. Telephone: +39226605201 FAX: +3922664551 email: camelot@imiucca.csi.unimi.it 

Simple sequence repeats (SSAs), also known as microsatellites, are a relatively new class of DNA markers that are based on short runs of 
tandemly repeated sequences, present in high abundance in many eukaryotic genomes. A high rate of variation in the number of repeat units 
between individuals or genotypes translates into a high degree of polymorphism that can be revealed by SSA-based markers. SSA markers are 
convenient, PCR-based, codominant markers that are easily transferable between populations, and often represent a highly informative set of 
universal markers for a particular species. 

The table below reports specific information for 34 randomly selected SSA sequences from a large set that we isolated and characterized from 
the maize inbred, 873. This information is sufficient to apply these SSAs as potential markers in any maize population. Amplification of a specific 
product from the maize genome for each SSA is performed using a single set of conditions: 

Microsatellite amplifications are performed in a 20 µI volume containing 25 ng of DNA, 5 picomoles of each primer, 200 µM each dNTP, 90mM 
· Tris-HCI pH 9, 20mM (NH4)2 SO4, 2.5mM MgCl2 and 0.75 unit of AmpliTaq polymerase (Perkin Elmer Cetus, Norwalk, CT USA). Amplifications 

conditions are: 94 C for 4 min (1 cycle); 94 C for 1 min, 56 C (or alternate-see specific primer data for ideal annealing temperature) for 1 min, 72 C 
for 1 min (30 cycles); 72 C for 7 min (1 cycle). A single annealing temperature of 56 C can be used as a general condition for all of these SSAs. 
Products are visualized on 6% denaturing polyacrylamide gels for single-base resolution, or viewed on 2%-4% metaphor agarose (FMC) gels. This 
set represents the 34 maize SSAs developed by Graziana Taramino and Scott Tingey at DuPont, described in greater detail in: Taramino, G. and 
Tingey, S.V., Simple Sequence Repeats For Germplasm Analysis and Mapping In Maize, Genome, in press 

In an initial mapping trial, we used the CM37 x T232 recombinant inbred population from Ben Burr. Using a 3.5% metaphor agarose 
gel/ethidium bromide detection system, 18 produced easily scorable polymorphisms, and therefore these 18 SSAs were mapped in this particular 
population. Below we report the chromosome arm assignments for these loci. The specific map positions, and the entire dataset of information 
about these SSAs, can be accessed through the Maize Genome Database (http://www.agron.missouri.edu). Although we have not currently done 
so, we expect that the remainder of these SSAs can be mapped using additional maize populations. 

Description of the Table fields: 
Locus Name: the unique locus identifier assignments that correspond directly to map position designations on public and published maps. 
SSA Identifier: the arbitrary unique identifier we have given to each cloned SSA. The name of the clone also denotes the general type of 
repeat for which screening was done. 
Type of Repeat: the core repeat as contained in the 873-derived clone that was sequenced. 
Pdmer Sequence: the 5'-->3' sequence of each of two primers for each SSA. Each pair of primers is specific to the unique flanking region 
sequence of the designated SSA and therefore defines that SSA. 
PCB Product Srze: the size in nucleotides of the PCR product amplified from the 873 allele. 
Anneal Temp: the temperature we recommend for the annealing phase of the PCR cycling. In general, amplifications for all 34 primer pairs can 
be done using a universal 56 C annealing temperature with no loss of information. 
Map,: the chromosome arm assignment for the 18 SSAs that could be mapped in the CMxT RI population. Specific map positions are available 
from the Maize Genome Database. 
H /Expected Heterozyqosjtyl: this is the calculated probability that any two maize genotypes tested will be polymorphic for this SSA locus. This 
value was calculated with the formula, H = 3D1-I(Pi)2, where Pi is the frequency of the ith allele in the population studied for each SSA locus. 
The allele assignments were made using high-resolution polyacrylamide gels, from a set of 12 maize lines that we have determined to represent 
87% of the RFLP allele diversity among hundreds of diverse maize lines. 

Locus SSA identifier Repeat Type Primer Sequence Anneal PCR Map H 
Name 

dupssr1 MAC.E00B03 (CA)32 

dupssr2 MAC.T03803 (CA)10 

dupssr3 MAC.E01C08 (CA)10 

dupssr4 MAC.T02E08 (AC)4 G (CA)6 T 
(CA)3 TA (CA)3 TA 
(CA)3 

dupssr5 MAC.E01E07 (CA)16 

dupssr6 MAC.T02808 (CA)6 (A)5 (CA)9 

dupssrl MAC.T02H12 (CA)25 

dupssrB MAC.T02810 (TA)3 (CA)17 
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TGT TCT CAA CAA CCA CCG 
CGT TTA GCG ATA TCA TTT TCC 
GCT AAA TGA TCA GTC ATC CAT G 
CCA TGT CGC TCA CAC ATC 
TTT AAA ACC TCT TTA TGA CTT TTG 
CTG ATA CCA TAT CCA GCA TCA 
CGA TAC T AA TGG AAG CCC T AA 

ATG GCC CAT TAA GTT TAT CAC 
GGC AAT CAA GCT AAG GAA G 
GCA GTG CAG ATG TTT AGA AGA 
GAT CCT ACC AAA ATC TTA TAG GC 
ACA GCT AGC CAA GAT CTG A TT 
GAA GCT TAA TCT GGA ATC TGG 
TGT TGC TTC CTT GTA AAA TCT 
AAA TAG TCC AGA AAA AAA TAG TGT G 
ACC TCT TGT TTT CCA CAG TTC 

Temp 

56 C 

56 C 

56 C 

56 C 

56 C 

56 C 

56 C 

56 C 

Prod 
Size 
(873) 
148 

158 

123 

121 

134 

112 

138 

107 

5S 0.85 

0.78 

BL 0.53 

9S 

0.48 

0.64 

0.84 

0.72 

0.61 



dupssr9 MAC.E01G01 (AC)26 GAT GTC GTG TGA GTG ACC TG 56 C 137 7L 0.80 
GTG TTG CTA TTG GAG TGA GAG 

dupssr10 MAC.E01A03 (AC)22 AGA AAA TGG TGA GGC AGG 56 C 167 5S 0.81 
TAT GAA ATC TGC ATC TAG AAA TTG 

dupssr11 MAC.E01C02 (AC)17 AGG CAA GGC rn en CAT AC 56 C 72 7L 0.76 
CGG ACG ACG ACT GTG nc 

dupssr12 MAC.E01F06 (AC)15 GAG GTA CTA CGT GCC GTG 56 C 131 1L 0.71 
CTA GAG ACA AAC GAG GCT AGG 

dupssr13 MAC.E01F07 (CA)12 TCG nc GGT CCA TGA AAT 56 C 143 7L 0.78 
CAA ATA TCT CTC ATC TTT GCT GAG 

dupssr14 MAC.E01C01 (CT)3 T (CT)6 (CA)16 AGC AGG TAC CAC AAT GGA G 56 C 95 BL 0.78 
GTG TAC ATC AAG GTC GAG ATT T 

dupssr15 MAC.T02E01 (CA)30 GAA GTC GAT CCA TCC ACC 56 C 147 6L 0.82 
GGG GTA GTG GAG ATA ACT AGT G 

dupssr16 MAG.801 (TA)35 (GA)14 nc rn AAC TAT TGG AAG CCC A 58 C 186 0.84 
GCG CAA TAT TCT CTC TAT ATT GAA 

dupssr17 MAG.1C05 (AG)24 AGA AGA AAG CGA GCA GAG AG 57 C 182 0.83 
GAG ACA CAT CAC ACC CTA AGT TC 

dupssr1B MAG.G02 (AG)20 AAT TTG AGG ATT TCC GCG A 60 C 111 0.40 
ACA TCA CAC GCA GAG CTA ATC 

dupssr19 MAG.E01 (AG)20 GCT GAA GGA CTA AAG AAA CCG 58 C 100 9S 0.86 
CCT CCA AGG TTG GTA CTG TC 

dupssr20 MAG.C04 (AG)20 TGT TCA TGT A TG A TT TGC CAA 58 C 146 0.69 
TCC TGG CAC TAG rn nc rn · T 

dupssr21 MAG.E05 (AG)10 GTG CAA ACT AA T CCA AAG CAA 58 C 112 2L 0.79 
ATG TAG GGA CAA AGG AA T AAA TCA 

dupssr22 MAG.D01 (GA)29 CTC TCC CCC CCT CTC CCT 63 C 113 0.76 
GTG TAT GTC TCC AAC ACG CG 

dupssr23 MAG.1A03 (GA)2 TA (GA)19 TGA TCA TCA T AA GCA CAC CG 58 C 104 3L 0.82 
CCA ATG TGA AGC AAG AGA GAA 

dupssr24 MAG.1A01 (GA)16 ACT GCA CTG CAC CTC TCT C 57 C 110 2L 0.89 
ACA CAA CGG en CTA ACC TT 

dupssr25 MAG.1F03 (GA)18 TGT TCA en GTC CAC CAC TG 58 C 145 2L 0.83 
GGA AGC ACA TAA ACT ATC TCG G 

dupssr26 MAG.1E07 (GA)23 GTC GGA GCA CTC CAA GAG 56 C 142 0.71 
CTT CTC GCT CAT GAG en AAA 

dupssr27 MAG.T01D04 (TG)13 (AG)29 CTA TAG TTG CCA CCA CAT CC 56 C 140 0.86 
ACC en TGT GTA ACT rn CA 

dupssr28 MAG.T01H07 (GA)28 GAA GGA AGC en TGT TAC AAG T 56 C 116 4L 0.87 
CTG GAG TGC TGG TCT TGT TAT 

dupssr29 MAG.T01D06 (GA)24 GAG CGA ATA CTG AAT AAC GC 56 C 121 9L 0.87 
TGT TGG ATG AGC ACT GAA C 

dupssr30 MAG.T01C02 (AG)25 TGA TAG TTT ATG GTA GCA ACT CG 56 C 109 0.84 
CAT TGT GCG GGT AAT GCT 

dupssr31 MTTC.D01 (TTC)80 GAT AGG AGT GCT GAG GCT AA 56 C 400 0.84 
ATC CTG CTA TAG AGT CCA GAG TT 

dupssr32 MTTC.G01 (TTC)65 AGG CCT GTT TAT TTG GCG 56 C 215 0.89 
TCA GTT CCT AGC CCA GGC 

dupssr33 MTTG.H02 (TTG)14 GTG en GGG ACA AAA AGG 56 C 100 0.69 
AGT CCA CTC GAG AGG ATG 

dupssr34 MTTG.802 (TTG)14 TCA GTG en TCA TTG TAA CGA 56 C 155 4L 0.73 
ATA AAC ATC TTG CCA GCA AA 
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COMBINED TABLE OF SSR LOCI 
(primers are available from Research Genetics) 

Bin Locus SSR Probe PCR Primer Pairs 
1.00-1,05 bng/147 p-bngl147(ZCA147) AGGAAGCTTTGGTCAAGTCTTA 

(Alternative location 7.01) GCTCACTCGATTTGTTGTGCTA 
1.00-1.05 bng/149 p-bngl149(ZCA 149) CATCCTCCAAAAGCACTACGT 

CAGCTGTCCGACACTTATTCTGTA 
1.01 tub1 p-phi056 ACGCCCAGATCTGTTCCTTCTC 

ATGGCGGCAGGCCGATTGTT 
1.01 tub1 p-phi097 TGCTTCACATTCAGTCACCGTCAG 

CCACGACAGATGATTACCGACC 
1.02 bng/109 p-bngl 109(ZAG 109) GCCAGCTGATGTCTGATGAACAGCACA 

GATCGGGCCAGATTTCTCAAGTCGTCA 
1.03 bng/176 p-bngl176(ZCA 176) AGTTCACGTCCAGCTGAATGACAG 

(Alternative location 6.04) CGCGCATCGCATGCTTATCCTA 
1.03 bng/182 p-bngl182(ZCT182) AGACCATATTCCAGGCTTTACAG 

ACAACTAGCAGCAGCACAAGG 
1.03 bng/439 p-bngl439(ZCT 439) TTGACATCGCCATCTTGGTGACCA 

TCTTAATGCGATCGTACGAAGTTGTGGAA 
1.03 pt p-phi095 CCGATCGGCTTTATCACTGTTTAGC 

ATGCACCATTCTAGCACTATAGCAACACT 
1.03 ts2 p-phi001 TGACGGACGTGGATCGCTTCAC 

AGCAGGCAGCAGGTCAGCAGCG 
1.04 bng/652 p-bngl652(ZCT652) CGCACGTCGGGAGAGAGGGAGA 

GCCGCAAACATAGCCGCCAAAAAT 
1.05 bng/421 p-bngl421 (ZCT 421) GGGGCAAGGACTTGTCGGT 

AGCCAGTTGCCCAGCATCT 
1.06-1.12 bng/400 p-bngl400(ZAG400) AGCTGTGACTGTGAAGGGAAAA 

CGTCACACCGCTGTTTCTTG 
1.06 bng/615 p-bngl615(ZCT615) CTTCCCTCTCCCCATCTCCTTTCCAA 

GCAACCTGTCCATTCTCACCAGAGGATT 
1.07 bng/100 p-bngl 1OO(ZAG100) TGCACGCACGGGCACTGAAC 

TAAGACATCTATGGCCACCGGAG 
1.08 dupssr12 p-dupssr12(MAC.E01 F06) CAGGTACTACGTGCCGTG 

CTAGAGACAAACGAGGCTAGG 
1.09 glb1 p-phi055 GAGATCGTGTGCCCGCACC 

TTCCTCCTGCTCCTCAGACGA 
1.09 glb1 p-phi094 AAAGAGGAGGAACGCGAAGGAC 

TCACATCCTGGCGGTCACCA 
1.09 glb1 p-phi011 GAGCTTCAGCAAGAGCATCCAG 

CAACGCGATCGATGTGAGCACA 
1.11 bng/131 p-bngl131 (ZCT131) CTCTGCGCTACCTTTCTGAGTC 

GCGGAATCCTTGTGTTCTTG 
1.11 bng/504 p-bngl504(ZCA504) CGGCAGCTCCAGCACCGGCAT 

AGTGTCCACATACCGCCACACACGTTT 
1.11 phi064 p-phi064 CCGAATTGAAATAGCTGCGAGAACCT 

ACAATGAACGGTGGTTATCAACACGC 
1.12 bng/257 p-bngl257(ZCAA257) TCGAGAGACGAGCGTTTGAATGCT 

GCTCTGAGGTTTTCATACGGGGTT 
2.02 bng/4698 p-bngl469(ZCA469) (See 9.03) 

2.03 bng/125 p-bngl125(ZAG125) CTGCTCTCACTGAGCTTGATGGAAAGG 
TGCAAATCAATGGCAAGGGACCTCGTAGTT 

2.03 bng/381 p-bngl381 (ZCA381) TCCCTCTTGAGTGTTTATCACAAA 
GTTTCCATGGGCAGGTGTAT 

2.03 bng/480 p-bngl480(ZCA480) GACATTTCCAATGGCGGCTTTCC 
(Alternative location 6.02) TCTAGTTATTCCAAGCCCTGGGC 

2.04 bng/108 p-bngl 108(ZAG 108) GCACTCACGCGCACAGTTCA 
CGCCTGCCAAGGTACATCAC 

2.04 bng/121 p-bngl121(ZCT121) AGTTCTACAGGCTTCTTGTCCAA 
CTATAAAGAAGGTAACTGGTTGCTC 

2.04 bng/166 p-bngl166(ZCT166) GCCAACGTTTCCAGCCTGA 
CTCCGTTTGCCCGAGTCC 
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2.04 bng/420 p-bngl420(ZCT 420) CTTGCGCTCTCCTCCCCTT 
GGCCAGCTCACTGCTCACT 

2.04 prp3 p-phi083 CAAACATCAGCCAGAGACAAGGAC 
ATTCATCGACGCGTCACAGTCTACT 

2.05 bng/180 p-bngl180(ZCT180) CTAGAGCCTTCGTCGCAGAG 
AACGGCGGCGAGATAAAAT 

2.05-2.10 bng/371 p-bngl371 (ZCA371) CAACGCGAAGCAGAGATAAAA 
TCGTCGCATGACCATAGTAGC 

2.05-2.06 dupssr21 p-dupssr21 (MAG.E05) GTGCAAACTAATCCAAAGCAA 
ATGTAGGGACAAAGGAATAAATCA 

2.08 bng/198 p-bngl198(ZCT198) GTTTGGTCTTGCTGAAAAATAAAA 
GCTGGAGGCCTACATTATTATCTC 

2.08 dupssr24 p-dupssr24(MAG.1 A01) ACTGCACTGCACCTCTCTC 
ACACAACGGCTTCTAACCTT 

2.08 dupss,25 p-dupssr25(MAG.1 F03) TGTTCACTTGTCCACCACTG 
GGAAGCACATAAACTATCTCGG 

3.04 bng/602 p-bngl602(ZCT602) CCCGATAGCCAAGCTCTCGCCAA 
AGCTCGTGGACCGAACAAGCCCA 

3.04 tpi4 p-nc030 CCCCTTGTCTTTCTTCCTCC 
CGATTAGATTGGGGTGCG 

3.04 tpi4 p-phi029 TTGTCTTTCTTCCTCCACAAGCAGCGAA 
ATTTCCAGTTGCCACCGACGAAGAACTT 

3.05 gst4 p-phi073 TTACTCCTATCCACTGCGGCCTGGAC 
GCGGCATCCCGTACAGCTTCAGA 

3.06 dupssr23 p-dupssr23(MAG.1 A03) TGATCATCATAAGCACACCG 
CCAATGTGAAGCAAGAGAGAA 

3.07 bng/197 p-bngl 197(ZCT197) GCGAGAAGAAAGCGAGCAGA 
CGCCAAGAAGAAACACATCACA 

3.08 bng/150 p-bngl 150(ZCA 150) GAAAAACCCCCTCCCCATAT 
(Alternative location 5S) AATGGCCGAACACAATTCAA 

4.00-4.04 bng/372 p-bngl372(ZCA372) TTCACATGCCATCCTCCTATAT 
TATCCCTCTCTGATCACGTTGG 

4.01 mU1 p-phi072 ACCGTGCATGATTAATTTCTCCAGCCTT 
GACAGCGCGCAAATGGATTGAACT 

4.03 adh2 p-nc004 TGCGAAGAAGCAGTAGCAAA 
TGGAGGTAGAAGACGCACG 

4.03 adh2 p-phi021 TTCCATTCTCGTGTTCTTGGAGTGGTCCA 
CTTGATCACCTTTCCTGCTGTCGCCA 

4.04 bng/252 p-bngl252(ZAG252) CGTTCTCCGTACAGCACAGACCAACGT 
CTCAGATGAACTCCTCAGCAGCTGTAGCCT 

4.04 bng/490 p-bngl490(ZCA490) GCCCTAGCTTGCTAATTAACTAACA 
ACTGTAAGGGCAGTGGACCTATA 

4.04 bng/667 p-bngl667(ZCT667) CGTGGATGTAAGGGGGCGCGCT 
GGCCGCTGCTCAACACAGGCAG 

4.04 zp22.1 p-phi074 CCCAATTGCAACAACAATCCTTGGCA 
GTGGCTCAGTGATGGCAGAAACT 

4.05 gpc1 p-nc005 CCTCTACTCGCCAGTCGC 
TTTGGTCAGATTTGAGCACG 

4.05 gpc1 p-phi079 TGGTGCTCGTTGCCAAATCTACGA 
GCAGTGGTGGTTTCGAACAGACAA 

4.05 gpc1 p-phi026 TAATTCCTCGCTCCCGGATTCAGC 
GTGCATGAGGGAGCAGCAGGTAGTG 

4.05 zp 19/22(pms2) p-phi096 CAACAATGTCGTCGTCGCTCTATC 
GACGACCGTTGAAACTGGTGCTTT 

4.06-4.07 dupssr34 p-dupssr34(MTTG.B02) TCAGTGCTTTCATTGTAACGA 
ATAAACATCTTGCCAGCAAA 

4.08 bng/292B p-bngl292(ZAG292) (See 9.06) 

4.08 dupssr28 p-dupssr28(MAG .T01 H07) GAAGGAAGCCTTTGTTACAAGT 
CTGGAGTGCTGGTCTTGTTAT 

4.08 ssu1 p-phi092 GTGGGGGAGCCTACTACAGG 
GACGAGGCCATCATCACGGT 

4.08 ssu1 p-phi093 AGTGCGTCAGCTTCATCGCCTACAAG 
AGGCCATGCATGCTTGCAACAATGGATACA 

4.09 bng/589 p-bngl589(ZAG589) GGGTCGTTTAGGGAGGCACCTTTGGT 
GCGACAGACAGACAGACAAGCGCATTGT 
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4.11 cat3 p-phi006 AGGCGGCGTGCTGAACACCT 
CGCTTCATCTCCCGTGACAATG 

4.11 cat3 p-phi076 TTCTTCCGCGGCTTCAATTTGACC 
GCATCAGGACCCGCAGAGTC 

4.11 cat3 p-phi019 TCCGCCTTTGTACCAATACAAGCCA 
ATCCATCTTCAGGTAGCAGGGGT 

5.00 ohp2 p-nc007 ACTGTTCCACCAAACCAAGC 
CTCCATGGAGAAGACGCG 

5.00 ohp2 p-phi024 ACTGTTCCACCAAACCAAGCCGAGA 
AGTAGGGGTTGGGGATCTCCTCC 

5.00-5.03 bng/150 p-bngl 150(ZCA 150) GAAAAACCCCCTCCCCATAT 
(Alternative location 3.08) AATGGCCGAACACAATTCAA 

5.01 bng/143 p-bngl 143(ZCA 143) GCACTGCCGGAGTGCCTTCT 
ATGCCGTGATCTGTGACATCTAACC 

5.01 dupssr1 p-dupssr1 (MAC.E00B03) TGTTCTCAACAACCACCG 
CGTTTAGCGATATCATTTTCC 

5.02 bng/105 p-bngl 105(ZAG 105) GACCGCCCGGGACTGTAAGT 
AGGAAAGAAGGTGACGCGCTTTTC 

5.02 bng/565 p-bngl565(ZAG565) TAAGAACGACGAACGGTAACTG 
GCTCACTGCACGCCAACAC 

5.02 ole2 p-phi113 GCTCCAGGTCGGAGATGTGA 
CACAACACATCCAGTGACCAGAGT 

5.03 bng/557 p-bngl557(ZAG557) TCACGGGCGTAGAGAGAGA 
CGAAGAAACAGCAGGAGATGAC 

5.03 rab15 p-phi00B CGGCTACGGAGGCGGTG 
GATGGGCCCACACATCAGTC 

5.04 bng/603 p-bngl603(ZCT603) CTGAGCTGGCCCCTGTGAATGGTG 
CGCCCTCCGCTGCGCTTCTCT 

5.04 bng/653 p-bngl653(ZCT653) CGCATTGCCATGGATGAAGAACTGG 
GCAAGCGCCTCACAAGGTATGCACA 

5.04 dupssr10 p-dupssr1 0(MAC.E01 A03) AGAAAATGGTGAGGCAGG 
TATGAAATCTGCATCTAGAAATTG 

5.06 bng/278 p-bngl278(ZAG278) CATGCATCAACGTAACTCCCT 
CATGTCACGCGTTCCACTTG 

5.06 bng/609 p-bngl609(ZCT609) GCTCGTTCTCGCCAGTGTGCCG 
GGCCCGAGCCATCTCTGCTGC 

5.07 gln4 p-phi085 CGAGACCACCATCATCTGGAAG 
TTTGCAATCGCTTCGGGGACC 

5.08 bng/118 p-bngl 118(ZCT118) CTTCCAGCCGCAACCCTC 
CCAACAACGCGGACGTGA 

5.08 bng/389 p-bngl389(ZCT389) GGTCACCCTCCCTTTGCAG 
ATTGCCTACACAGTTTGATTGG 

5.09 bng/386 p-bngl386(ZAG386) CACCCTCCCTTTGCAGGTA 
TGGTTTATCAGATAACGATTCAGC 

6.00 fdx1 p-phi075 GGAGGAGCTCACCGGCGCATAA 
AAAGGTTACTGGACAAATATGCGTAACTCA 

6.01 bng/107 p-bngl 107(ZAG 107) AGCAATGCATTATCTTTTGGGACAAACCCCA 
CAACAACAAGTGGCTGGCTAGGGTGAA 

6.01 bng/161 p-bngl161 (ZCT161) GCTTTCGTCATACACACACATTCA 
ATGGAGCATGAGCTTGCATATTT 

6.01 bng/238 p-bngl238(ZAG238) CTTATTGCTTTCGTCATACACACACATTCAT 
GAGCATGAGCTTGCATATTTCTTGTGG 

6.01 bng/249 p-bngl249(ZAG249) CCGGTCGCAGTTAGTAGATGAT 
TCGGCGTTGATTTCGTCAGTA 

6.01 bng/391 p-bngl391 (ZCAA391) CAGATATCACAGCATCAGAAGATCA 
AAAATGTAAGAACTTGTTTGGGATT 

6.01 bng/426 p-bngl426(ZCT 426) TGCATTAATTAGAAGGCTATCAAA 
GGTTTGGTGACTGGACTGACTT 

6.01 phi077 p-phi077 GAGAAGAGGATCAGGTTCGTTCCA 
CGCGTTGTACATCTTGCCTGCTT 

6.02 bng/480 p-bngl480(ZCA480) GACATTTCCAATGGCGGCTTTCC 
(Alternative location 2.03) TCTAGTTATTCCAAGCCCTGGGC 

6.04 p/1 p-nc010 TGAGCTGACGACGAGCAG 
CATTATCTGTTCGGCCCG 

6.04 p/1 p-nc009 CGAAAGTCGATCGAGAGACC 
CCTCTCTTCACCCCTTCCTT 
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6.04 p/1 p-phi031 GCAACAGGTTACATGAGCTGACGA 
CCAGCGTGCTGTTCCAGTAGTT 

6.04 bng/176 p-bngl176(ZCA 176) AGTTCACGTCCAGCTGAATGACAG 
(Alternative location 1.03) CGCGCATCGCATGCTTATCCTA 

6.05 bng/315 p-bngl345(ZCT345) CGAAGCTAGATGTAGAAAACTCTCT 
CTTACCAACCAACACTCCCAT 

6.05 pdk1 p-nc012 TAATTTAAACACCACACCACCG 
ACACACGCCAAAGAAAAACC 

6.05 pdk1 p-phi081 AAGGAACTGGTGAGAGGGTCCTT 
AGCCCGATGCTCGCCATCTC 

6.05 pdk1 p-phi078 CAGCACCAGACTACATGACGTGTAA 
GGGCCGCGAGTGATGTGAGT 

6.05 pdk1 p-phi025 GCAACATCCTGGAGAGCCACTACAAGG 
ACAGCCTGTTTTCCTGGACAGTGAACTC 

6.06 dupssr15 p-dupssr15(MAC.T02E01) GAAGTCGATCCATCCACC 
GGGGTAGTGGAGATAACTAGTG 

6.07 tlk1 p-phi070 GCTGAGCGATCAGTTCATCCAG 
CCATGGCAGGGTCTCTCAAG 

7.01 02 p-phi057 CTCATCAGTGCCGTCGTCCAT 
CAGTCGCAAGAAACCGTTGCC 

7.01 o2 p-phi112 TGCCCTGCAGGTTCACATTGAGT 
AGGAGTACGCTTGGATGCTCTTC 

7.01 bng/147 p-bngl147(ZCA147) AGGAAGCTTTGGTCAAGTCTTA 
(Alternative location 1 S) GCTCACTCGATTTGTTGTGCTA 

7.02 bng/398 p-bngl398(ZAG398) CGTCGGCCAACAGGGTATC 
CTCGCACGCGGTCTTCTTC 

7.02 oec17'-Z26824 p-phi114 CCGAGACCGTCAAGACCATCAA 
AGCTCCAAACGATTCTGAACTCGC 

7.03-7.06 bng/339 p-bngl339(ZCT339) CCAACCGTATCAGCATCAGC 
GCAGAGCTCTCATCGTCTTCTT 

7.03 bng/434 p-bngl434(ZCT 434) GTGCAAAGGGGAGAGAGGAA 
TCGCCGTTCTTCGCCTTAG 

7.03-7.06 bng/572 p-bngl572(ZAG572) ACTGGACTGTCCTCGTGCCTA 
CAAAAAAAGATTCGTTCGGAGTAA 

7.03 bng/657 p-bngl657(ZCT657) TCTGAGGATGCCCAATCATGCGC 
CGTTTCCGTTCGTCACCAGCTCG 

7.03 dupssr11 p-dupssr11 (MAC.E01 CO2) AGGCAAGGCTTTCTTCATAC 
CGGACGACGACTGTGTTC 

7.03-7.04 dupssr9 p-dupssr9(MAC.E01 G01) GATGTCGTGTGAGTGACCTG 
GTGTTGCTATTGCAGTGAGAC 

7.04 bng/155 p-bngl 155(ZCT155) ACCGAGTAGCCGAGACACG 
AGAGTCCTGGAGCCACATGAG 

7.04 dupssr13 p-dupssr13(MAC.E01 F07) TCGTTCGGTCCATGAAAT 
CAAATATCTCTCATCTTTGCTGAC 

7.06 bngl469C p-bngl469(ZCA469) (See 9.03) 

7.06 uaz230(gfu) p-phi082 CACAGCACAGGCAGTTCG 
CGCGGCAAAAGATCTTGAACACCT 

8.01 bng/669 p-bngl669(ZCT669) GCACGCACCAGCAGTCGGCAGT 
CGGCCTAGTGGGCATGGAGCCT 

8.02 bng/119 p-bngl119(ZCT119) AGGTGAGGAGAGGAAAGGTTGT 
GCCACTCCGCATCCGAGC 

8.02 bng/666 p-bngl666(ZCT666) AAAAGGCAAGTAGCTAGCATGCATTTGCAG 
GGCTCACGTCCGTATCCAAACCAACA 

8.02 dupssr3 p-dupssr3(MAC.E01 COB) TTTAAAACCTCTTTATGACTTTTG 
CTGATACCATATCCAGCATCA 

8.03 bng/162 p-bngl 162(ZCA 162) ACTAGCAGCAGTAAAACCTAATAAAGGGA 
CAAGTAGCTAGCAGTCATTTGCAGTGT 

8.04 act/ p-phi115 CTAGTGGGCGAACAACTGGTAAG 
AAAGAGACCGTGTCAGGATTGCC 

8.04 bng/240 p-bngl240(ZAG240) AAGAACAGAAGGCATTGATACATAA 
TGCAGGTGTATGGGCAGCTA 

8.04 rip1 p-phi060 ACATGCAGAAGCTTGGCATCAAGG 
GCTGAGCGATCAGTTCATCCAG 

8.04 rip/ p-phi014 AGATGACCAGGGCCGTCAACGAC 
CCAGCTTCACCAGCTTGCTCTTCGTG 
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8.08 dupssr14 p-dupssr14(MAC.E01 C01) AGCAGGTACCACAATGGAG 
GTGTACATCAAGGTCCAGATTT 

8.08 gst1 p-phi080 CACCCGATGCAACTTGCGTAGA 
TCGTCACGTTCCACGACATCAC 

8.08 gst1 p-phi015 GCAACGTACCGTACCTTTCCGA 
ACGCTGCATTCAATTACCGGGAAG 

9.01-9.02 dupssr6 p-dupssr6(MAC.T02B08) GATCCTACCAAAATCTTATAGGC 
ACAGCTAGCCAAGATCTGATT 

9.01 sh1 p-phi033 ATCGAAATGCAGGCGA TGGTTCTC 
ATCGAGATGTTCTACGCCCTGAAGT 

9.01 sh1 p-phi028 TCTCGCTGTCCTTCGATTAGTACGG 
AATGCAGGCGATGGTTCTCCGGCCT 

9.01 sh1 p-phi044 TTATTGGTCCCTCTCCCGTCCCAGA 
AGCATACCCCAATGGTCAACAGGGA 

9.02 bng/244 p-bngl244(ZAG244) GATGCTACTACTGGTCTAGTCCAGA 
CTCCTCCACTCATCAGCCTTGA 

9.02 bz1 p-phi017 CGTTGGCGACCAGGGTGCGTTGGAT 
TGCAACAGCCATTCGATCATCAAAC 

9.03 bng/127 p-bngl127(ZCT127) CATGTATACGAGAAGCACCCTAT 
ATCGTAACTCAGCGGTTTGTG 

9.03 bng/430 p-bngl430(ZCT 430) CTTATCGAGCATCTTCCTTCTCTCC 
TCCGGTGATGCTCCAGCGAC 

9.03 bng/469A p-bngl469(ZCA469) AGGGTGTACAGGTCCAAGTCCAA 
AATGTGGGTCGTCAGCCATCAG 

9.03 dupssr19 p-dupssr19(MAG.E01) GCTGAAGGACTAAAGAAACCG 
CCTCCAAGGTTGGTACTGTC 

9.03 pep1 p-phi065 AGGGACAAATACGTGGAGACACAG 
CGATCTGCACAAAGTGGAGTAGTC 

9.03 wx1 p-phi022 TGCGCACCAGCGACTGACC 
GCGGGCGACGCTTCCAAAC 

9.03 wx1 p-phi027 CACAGCACGTTGCGGATTTCTCT 
GCGTACGTACGACGAAGACAC 

9.03 wx1 p-phi061 GACGTAAGCCTAGCTCTGCCAT 
AAACAAGAACGGCGGTGCTGATTC 

9.04 sus1 p-phi032 CTCCAGCAAGTGATGCGTGAC 
GACACCCGGATCAATGATGGAAC 

9.04 sus1 p-phi016 TTCCATCATTGATCCGGGTGTCG 
AAGGAGCAACATCCCATCCAGGAA 

9.04 sus1 p-phi042 ATGTGGCCATCATTCAATGCTGTAGAC 
ACACATGCAGGTGCAGCCAGA 

9.06 bng/128 p-bngl128(ZCT128) CACCTGGAGGGACCCATTCC 
AGGACCACAGGATCCATCATCCT 

9.06 bng/279 p-bngl279(ZAG279) GCATGCGTACCTTCAAGCTA 
TGTGTTCATCGGCAATTTTG 

9.06 bng/292A p-bngl292(ZAG292) TGGTAGGACCTTACAATGGGA 
CGGGAGTACTGCTACACACGA 

9.06 bng/619 p-bngl619(ZCT619) ACCCATCCCACTTTCCACCTCCTCCT 
GCTTTCAGCGAATACTGAATAACGCGGA 

9.06-9.07 dupssr29 p-dupssr29(MAG .T01 D06) CAGCGAATACTGAATAACGC 
TGTTGGATGAGCACTGAAC 

10.02 phi059 p-phi059 AAGCTAATTAAGGCCGGTCATCCC 
TCCGTGTACTCGGCGGACTC 

10.02 phi063 p-phi063 GGCGGCGGTGCTGGTAG 
CAGCTAGCCGCTAGATATACGCT 

10.03 bng/210 p-bngl210(ZAG210) GCCTCGCACCAAGACATAATA 
TGCCCCATTTGAGTAGACTTC 

10.03 bng/640 p-bngl640(ZCT640) TGCGGATCCAACACGGACTGTCC 
GCAGGCTCTCCGCCCACACCTC 

10.04 bng/137 p-bngl137(ZCA 137) AGACAACTACCCCCACCCA 
CCAGGTTACCGTGAAATGCT 

10.04 hsp90' p-phi071 GGAGTTCATCAGCTACCCCATCT 
TTCTGCTTGTTGATCTGCACCCAC 

10.04 mgs1 p-phi062 CCAACCCGCTAGGCTACTTCAA 
ATGCCATGCGTTCGCTCTGTATC 

10.04 nac1 p-phi084 AGAAGGAATCCGATCCATCCAAGC 
CACCCGTACTTGAGGAAAACCC 
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10.06 bng/153 p-bngl 153(ZCT153) TCCACTGCTCCTCCACTGC 
CACTTCAAACTGTCAAATCTCCA 

10.06 bng/236 p-bngl236(ZAG236) CGCTTTGCAGTACCAGTACACAC 
GACGACAACTGCAGAGTACCAGA 

10.06 bng/594 p-bngl594(ZAG594) CGAGCGCTTTGCGAGTACCAGTACACA 
CTGCGTGCGTCCAGCCTCCACT 

dupssr16 p-dupssr16(MAG.B01) TTCTTTAACTATTGGAAGCCCA 
GCGCAATATTCTCTCTATATTGAA 

dupssr17 p-dupssr17(MAG.1 COS) AGAAGAAAGCGAGCAGACAG 
GAGACACATCACACCCTAAGTTC 

dupssr18 p-dupssr18(MAG.G02) AATTTGAGGATTTCCGCGA 
ACATCACACGCAGAGCTAATC 

dupssr2 p-dupssr2(MAC. T03803) GCTAAATGATCAGTCATCCATG 
CCATGTCGCTCACACAT 

dupssr20 p-dupssr20(MAG. C04) TGTTCATGTATGATTTGCCAA 
TCCTGGCACTAGTTTTTCTTTT 

dupssr22 p-dupssr22(MAG.D01) CTCTCCCCCCCTCTCCCT 
GTGTATGTCTCCAACACGCG 

dupssr26 p-dupssr26(MAG.1 E07) GTCGGAGCACTCCAAGAC 
CTTCTCGCTCATCAGCTTAAA 

dupssr27 p-dupssr27(MAG.T01 D04) CTATAGTTGCCACCACATCC 
ACCCTTTGTGTAACTTTTCA 

dupssr30 p-dupssr30(MAG. T01 CO2) TGATAGTTTATGGTAGCAACTCG 
CATTGTGCGGGTAATGCT 

dupssr31 p-dupssr31 (MTTC.D01) GATAGGAGTGCTGACGCTAA 
ATCCTGCTATAGAGTCCAGACTT 

dupssr32 p-dupssr32(MTTC.G01) AGGCCTGTTTATTTGGCG 
TCAGTTCCTAGCCCAGGC 

dupssr33 p-dupssr33(MTTG.H02) GTGCTTGGGACAAAAAGG 
AGTCCACTCCAGAGGATG 

dupssr4 p-dupssr4(MAC.T02E08) CGATACTAATGGAAGCCCTAA 
ATGGCCCATTAAGTTTATCAC 

dupssr5 p-dupssr5(MAC.E01 E07) GGCAATCAAGCTAAGGAAG 
GCAGTGCAGATGTTTAGAAGA 

dupssrl p-dupssr7(MAC.T02H12) GAAGCTTAATCTGGAATCTGG 
TGTTGCTTCCTTGTAAAATCT 

dupssrB p-dupssr8(MAC.T02810) AAATAGTCCAGAAAAAAATAGTGTG 
ACCTCTTGTTTTCCACAGTTC 
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VIII. WORKING MAPS 

The Genetic Working Maps presented in MNL 69:247-256 contain the most recent complete synthesis of known gene mapping information, 
built on an RFLP map framework. They were prepared by compiling information from all available sources of mapping data. The RFLP maps in this 
issue are substantially enhanced, updated and expanded, developed during the past year as part of the Maize Mapping Project. 

The Maize Mapping Project, UMC/USDA-ARS, seeks to develop organized, functional knowledge and mapping data on genetic content 
and relationships in the nuclear genome of maize. Insofar as priorities and resources permit, we are continuing to map RFLP markers. Our current 
priorities include mappinq of (1) functionally defined clones that we request following reports in the literature or that we receive voluntarily from 
research scientists; (2) the remaining sequenced csu cDNA clones produced and evaluated by Dr. Chris Baysdorfer; (3) cDNA anchor sets from 
other grass species. At the same lime we are mapping phenotypic and morphological mutants relative to molecular markers with the goal of 
identifying potential cDNA/mutant allelic pairs. Association of a cDNA sequence with a phenotype provides a powerful tool to enhance our 
understanding of biochemical pathways, regulatory functions, and quantitative trait expression. Identification of gene functions by either cDNAs or 
phenotypes that correspond to QTL regions may permit dissection of the trait and enhance our understanding of the effects of specific genes 
relative to traits of interest. 

To locate large numbers of mutants relative to molecular markers, including DNA sequences of known function, several resources are needed. 
The first is a solid, high resolution map containing a large number of sequenced cDNAs. The second is a 'Core Marker" set of simple, evenly 
spaced RFLP markers that forms a framework for grouping mutants, cDNAs and QTLs to chromosome region. The third is a rapid, cost-effective 
means of dealing with the large number of mapping populations needed to place the myriad of already documented and new, phenotypically 
characterized mutants into bins. 

OBJECTIVES 
1. Produce a well defined genetic map with a preponderance of sequenced cDNAs using the Tx303 x CO159 Immortalized F2 population (this 

report is an update). 
2. Define an appropriate set of core markers to facilitate localization of genes defined by mutants or by cDNAs, and of QTLs, into "bins" (MNL 

69:247-256). 
3. Develop and implement a simple, rapid, and cost-effective strategy for large-scale mapping of mutants (manuscript in preparation). 

METHODS AND PROGRESS 
1. High Resolution Map: The mapping population consists of 54 Immortalized F2 individuals from a cross of Tx303 x CO159 (Gardiner et al., 

1993). Hybridization and washing procedures were conducted according to the protocols given in the University of Missouri RFLP Laboratory 
Manual (copies are available by writing the UMC RFLP Lab or by request from musket@teosinte.agron.missouri.edu). All hybridizations were 
carried out using 32p oligolabelled probes. All probes were screened for polymorphism with CO159 and Tx303 using EcoRI, Hindlll, EcoRV, 
BamHI, Oral, Xbal, Bgnl, and Sstl. The enzyme with the best fragment separation between the two lines was chosen for mapping. In some cases 
more than one enzyme was used to map multi-copy probes. · 

Data collection and map construction: During the past 18 months, we have made a particular effort to review and to enhance the quality of the 
data. All autoradiograms were scored independently by two readers. Markers with more than 3 missing data points were discarded. 
Chromosomes were constructed using MAPMAKER for UNIX, Version 3 on a Sun SPARC Server 1000. The 10 maize chromosomes were defined 
with the 'make chromosome' function and the 90 core markers were anchored to chromosomes. Initial framework orders were assigned for the 
core markers for each chromosome. The remaining markers were attached to linkage group with the 'assign' command. Additional markers were 
added to the framework, first at LOD3 then at LOD2, 10-15 markers at a lime with the 'build' command. Remaining markers assigned to each 
linkage group were added with the 'place' command. Marker loci with more than three double crossovers based on the 'genotype' function were 
deleted. Chromosome maps were extracted to postscript files and edited with the UNIX text editor. The resulting form of the maps is similar to 
those presented by Matz, Burr and Burr (MNL 69:257-267). 

The 1995 UMC map contained approximately 600 loci. The 1996 map contains about 1000 loci, with the most substantial increase in the 
number of cDNA and defined-function loci (over 240 loci are detected by csu cDNAs, isolated and sequenced by Chris Baysdorfer; these are part 
of a targeted group of approximately 1000 csu clones we are mapping in this collaboration). 

2. Core Markers: Core markers are as on the 1995 map except for the replacement of umc163 with the more suitable umc259 at the same 
location on chromosome 10. In some cases an acronym for candidate function has been added to the name of the probed site, based upon 
information following sequencing. Core markers were selected as follows. Markers that had simple fragment patterns and were distributed along 
the chromosome every 20 to 30 cM were selected as potential core markers. Markers that were not among the previous set of cores identified by 
Gardiner et al., 1993, were screened against A619, A632, B73, Mo17, CO159, and Tx303 using EcoRI, Hindlll, EcoRV, BamHI, Oral, Xbal, Bg/11, 
and SsN to determine whether they were polymorphic enough to be designated as core markers. Several substitutions last year were made due to 
low levels of polymorphism or high fragment pattern complexity. Subsequently, all the previous core markers were screened in the same manner. 
Final choices were based on even spacing, simple fragment patterns, and high degrees of polymorphism. 
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Locus names for clones have been assigned according to the following criteria: 
1. Gene. function defined. If a clone has been sequenced and found to have high similarity (typically BlastX score of at least 80) to a previously 

defined functional protein or gene. and detects a single site in a number of lines with multiple enzymes. the locus is named as a gene with a suitable 
acronym. according to the Maize Nomenclature Standards (MNL 69:182-184; Web location 
http://www.agron.missouri.edu/maize_nomenclature.html). 

2. Gene candidate. If a clone has high similarity to a previously defined functional molecule or gene. but detects multiple sites. each mapped 
locus is named as a probed site with a suitable acronym in parenthesis. e.g .• csu179a(hsp70). This designation reflects the potential function of this 
site. pending evidence for a function of a gene specifically at this location. Relevant information such as GenBank number and potential product or 
function may be retrieved from MaizeDB using the locus name. 

3. Gene. function unknown. If a cDNA has no significant similarity and detects a single site. the mapped locus is named as a probed site. e.g. 
csu320. Addition of the acronym gfu. e.g. csu320(gfu). for "gene. function unknown". has been deferred. 

4. Probed site. If a clone has no significant similarity or has not been examined for similarity, and detects more than one site, loci detected are 
named as probed sites. e.g .• csu315c. 

Categories 2. 3. and 4 may be upgraded at any time pending additional information from the literature or updated similarity searches. Changes 
are reflected regularly in MaizeDB in both the locus names and in the maps themselves. Previous designations are maintained as synonyms to 
facilitate searching. 

Acronyms in parentheses. for probed sites on maps. identify the candidate function at that site, based on high sequence similarity but showing 
multiple sites (see criterion 2 above). These acronyms, and the name of the gene product or function, follow. 

a1 anthocyaninless1 chs1a chitin synthase 
aba abscisic stress protein homolo chs1b chitin synthase 
ace acetyl-coenzyme A carboxylase1 cin4 cin4, transposable element 
act actin ck casein kinase 
adc amino deoxychorismate synthesis clp CLP protease 
adh2 alcohol dehydrogenase2 clx calnexin 
aga alpha-galactosidase cppgk phosphoglycerate kinase, chloroplast 
agp1 ADP glucose pyrophosphorylase1 csa contact site A glycoprotein 
agp2 ADP glucose pyrophosphorylase2 cts citrate synthase 
ahh adenosyl homocysteine hydrolase . dba DNA binding activity 
air aleurain dcm1 deoxycytidine methylase 
als1 acetolactate synthase1 dcso disconnected protein, DISCO 
als2 acetolactate synthase2 DH7 cytochrome P450 
alt alanine amino transferase dis aspartyl-tRNA synthetase 
amyBS2 beta amylase eif eucaryotic initiation factor 
anp1 anaerobic protein1 eif2 eucaryotic initiation factor2 
ant adenine nucleotide translocator eif5A eucaryotic initiation factor 5 
ap apetala elf elongation factor 
ars1 autonomously replicating sequence elf1 elongation factor 
alp ATP synthase EMu endogenous Mu, transposable element 
atpb ATP synthase beta subunit. mitochondrial end early nodulin 
b32a aka rip, ribosome inactivating protein els els-family transcription factor 
b32b aka rip, ribosome inactivating protein ext extensin 
b32c3a aka rip, ribosome inactivating protein F-bA fructose-bisphosphate aldolase 
b32c3b aka rip, ribosome inactivating protein fdx ferredoxin 
b70a heat shock protein, 70kDa fer ferritin 
b70b heat shock protein, 70kDa gab1 gibberellin 
bre1 branching enzyme1 gag GAG polyprotein 
Bs1 barley stripe, transposable element gas! gibberellin stimulated transcript 
bt2 brittle endosperm2 gbp GTP-binding protein 
bZip bZip motif glb globulin 
cab, chlorophyll alb binding protein GIDh glutamate dehydrogenase 
cac calcium chanel protein gne guanine nucleotide exchange 
cah carbonic anhydrase gpc glyceraldehyde 3-phosphate dehydrogenase 
cat1 catalase1 gpc1 glyceraldehyde-3-phosphate dehydrogenase1 
cat3 catalase3 gpr G protein subunit 
cdc2 cell division control protein2 gr! general regulatory 14-3-3 protein 
cdc2a cell division control protein2 grp glycine-rich protein 
cdc2b cell division control protein2 grx glutaredoxin 
cdc2c cell divisic:, control protein2 gss starch synthase 
cdc48 cell division protein48 gts glutaminyl-tRNA synthetase 
cdj chaperone DNA J hfi Hageman factor inhibitor 
cdpk calcium dependent protein kinase his2a histone H2A 
cgn collagen his2b histone H2B 
chi chalcone flavanone isomerase his2B1 histone H2B1 
chn chitinase his3 histone 3 
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hmd homeodomain protein pep phosphoenolpyruvate carboxylas 
hex homeobox pext pistil extensin 
hsp heat shock protein phy phytochrome 1 
hsp18 heat shock protein 18kDa phy81 phytochrome 
hsp70 heat shock protein, 70kDa phy82 phytochrome 
hsp90 heat shock protein, 90 kDa plB 
incw invertase, cell wall pit phospholipid transfer protein 
inv1A invertase pmr15 phosphoenolpyruvate carboxylase 
iron iron deficiency pog1a globulin processing protein 
ivr invertase pog1b globulin processing protein 
ivr2a invertase, soluble pog1c globulin processing protein 
kapp kinase associated protein phosphatase pop putative organelle permease 
kri ketol-acid reductoisomerase ppi peptidyl-prolyl isomerase 
Ian laminin (glycoprotein) PPP pyrophosphate-energized proton pump 
lbr pre proteasome C9 
ldl LDL lipoprotein prh protein phosphatase 
lfyA leafy prk phosphoribulokinase 
lfyB leafy prl protease PrlC1 
lhcb chlorophyll alb light harvesting psaN photosystem I, subunit N 
lox lipoxygenase psei cystatin 
Its leucine tRNA synthetase plk protein kinase 
mat MAF, avian sarcoma px peroxidase 
mah9 responsive to abscisic acid 15 r1 colored1 
map microtuble associated protein rab30 responsive lo abscisic acid30 
me NADP malic enzyme1 rap retinoblastoma-associated protein 
me2 NADP malic enzyme3 rip ribosome-inactivating protein 
met methionine synthase rnp chloroplast RNA binding protein 
rm male sterile rpl 10 ribosomal protein L 10e 
msd methylmalonate-semialdehyde dehydrogenase rpl19 ribosomal protein L19 
mta mouse transplantation antigen rpl5 ribosomal protein L5 
myb myb protein rpl7 ribosomal protein L7 
nabp1 nucleic acid binding protein1 rpS11 ribosomal protein S11 
nad NADH ubiquinone oxidoreductase rpS12 ribosomal protein S12 
ndk nucleotide diphosphate kinase1 rpS22 ribosomal protein S22 
nia1 nitrate reductase rpS6 ribosomal protein S6 
nia2 nitrate reductase rpS8 ribosomal protein S8 
nia3 nitrate reductase S10 
nia4 nitrate reductase sam S-adenosylmethionine decarboxylase 
nia5 nitrate reductase sar SAR1 
nr nitrate reductase sbe starch branching enzyme 
nrA nitrate reductase sbe1 starch branching enzyme 
nrB nitrate reductase sea short chain alcohol dehydrogenase 
ntc Notch sci subtilisin-chymotrypsin inhibitor 
ntm9 neurotoxin M9 SDAg Sm-D nuclear antigen 
obf3A octopine synthase binding factor sdh sorbitol dehydrogenase 
obf38 octopine synthase binding factor ser serine tRNA synthetase 
obf6 octopine synthase binding factor ser proteasome C9 subunit 
odo alpha keto dehydrogenase sod superoxide dismutase 
oec oxygen evolving complex sod2 superoxide dismutase 
ohp opaque2 heterodimerizing protein sod3a superoxide dismutase 
orp orange pericarp sod3b superoxide dismutase 
orp1 orange pericarp1 sod3c superoxide dismutase 
orp2 orange pericarp2 sod4 superoxide dismutase 
P450 cytochrome P450 sod4a superoxide dismutase 
pac sod4b superoxide dismutase 
pal2 phenylalanine ammonia lyase spr1 signal recognition particle re????? 
pal3 phenylalanine ammonia lyase srp RNA polymerase suppressor 
pck phosphoenolpyruvate carboxykinasw ssu ribulose bisphosphate carboxylase, small subunit 
per protochlorophyllide reductase1 ssu1a ribulose bisphosphate carboxylase, small subunit 
pdc1 pyruitate decarboxylase1 ssu1b ribulose bisphosphate carboxylase, small subunit 
pdk pyruvate, orthophosphate dikinase tat transcription associated factor 
pdk2 pyruvate, orthophosphate dikinase tas1a telomere associated sequence 
pds tas1b telomere associated sequence 
pds2 tas1c telomere associated sequence 
pds3 tas1e telomere associated sequence 
PDsl protein disulfide isomerase tas1g telomere associated sequence 
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tas1h telomere associated sequence tua alpha tubulin 
tas1j telomere associated sequence tyk30 tyrosine protein kinase 
tas1I telomere associated sequence ubf9 ubiquitin fusion protein 
tas1m telomere associated sequence ubi polyubiquitin 
tas1n telomere associated sequence uce ubiquitin conjugating enzyme 
tas1o telomere associated sequence ugu UDP-glucose pyrophosphorylase 
tas1p telomere associated sequence vfa vessicle fusion ATPase 
tas2b telomere associated sequence vp2274a viviparous 
tas2g telomere associated sequence vp2274b viviparous 
tas3a telomere associated sequence vpp vacuolar proton pump 
tas4j telomere associated sequence vsp vegetative-specific protein 
tas4k telomere associated sequence zag Zea agamous 
tas4I telomere associated sequence zag1 Zea agamous 
tau tau protein zag2 Zea agamous 
tgd dTDP-glucose dehydratase ze40 
thp thiol protease zp19 alpha zein 
thr threonine synthase zp22 alpha zeln 
Ilk tousled protein kinase zpE2 alpha zein 
tpi triose phosphate isomerase 
tpi5 triose phosphate isomerase5 
ts2 tassel seed2 

We gratefully acknowledge the generosity of the organizations listed in the map legend, and numerous individual scientists, for providing the 
probes used in producing the high density map. Special thanks is given to Chris Baysdorfer for providing sequence information for the clones in his 
library. This research was supported by USDA-ARS and the NRI Competitive Grants Program. 

If you have cloned a gene that you would like to have mapped, please send it as a stab If at all possible (otherwise plasmid 
DNA - we cannot accept clones supplied as insert only), along with a completed clone information sheet (in this issue of MNL, or 
available electronically at http://www.agron.mlssouri.edu) to the UMC Maize RFLP Laboratory, ATTN: Theresa Musket, 302 
Curtis Hall, University of Missouri, Columbia, MO 65211. 
There Is no charge for this mapping. All clones submitted for mapping will be included on the public map and in MaizeDB. You 
will be notified by mail of the location of your clone. If you have questions regarding the status of a clone that you have 
submitted for mapping, please use the Clone Mapping Query Form in MaizeDB. 

Most of the probes for loci listed on this map are publicly available from the University of Missouri-Columbia RFLP Laboratory, as described in 
Section VI of this issue. See the listing in MaizeDB, 'Available From', for particulars, and for information about how to request clones. 

Georgia Davis, Mike McMullen, Ed Coe, and Mary Polacco 

Quote without comment--

'The Maize Genome Project to identify all corn genes is well underway, and corn seed companies have a 
strong understanding of their crops .... ' 

'First, and most obvious, traits that would increase the value of an ingredient must be identified .... " 
'Second, there must be a precise understanding of what elements of plant metabolism might bring about the 

desired functionality .... " 
'Third, simple and easy-to-use tests must be developed to identify expression of a plant's 'chemotype.' .... ' 
"Fourth, the information from screening experiments must be collected in such a way as to illuminate the 

genetic control of characteristics of interest. The Maize Genome Project is well on the way to complete mapping 
of starch genetic structure. Commercial efforts to identify and understand specific mutants are also underway. 
Information management systems are designed to easily capture field information and relate it to theoretical 
models of inheritance .... " 

--A. C. Stockwell, 1995. Some current developments in technology
assisted breeding. Cereal Foods World 40:7-10. 
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MAP LEGEND 

Markers are listed to the right of the map. Marker sets were provided by: 
agr Mycogen Plant Sciences 
asg Asgrow Seeds 
bnl Brookhaven National Laboratory 
csu California State University-Hayward 
isu Iowa State University 
npi Native Plants Inc. & Pioneer Hi-Bred International 
php Pioneer Hi-Bred International 
uaz University of Arizona 
umc University of Missouri-Columbia 
Numerous individual cDN:\ donors 

The large numbers (i.e. 1.01) to the left of the chromosome identify the bin, bounded by Core Markers located at the horizontal lines. Small 
numbers immediately to the left of the chromosome indicate cM distances between the markers using Haldane's correction. Bold markers are set 
to the framework, on which order is assured first at LOO 3.0 (occasionally at LOO 2.0). Markers in lighter type are placed at a 2-point LOO of 3.0. 
Such markers are firmly placed in this part of the map, but order relative to the framework sites cannot be defined. Distance from the framework 
site is shown preceding the marker or series of markers. 

Please refer to the list of new genes in this issue, and to the genelist in MNL 69, for information about individual genes in these maps. 

Amazing Maize Maze comes to Ames 
by KRISTIN KERNEN 

Daily Sutjf Wriur 

Imagine acres of corn with people 
wandering about on twisting paths. 
No, it's not the Field of Dreams -
it's the Amazing Maize Maze. 

Volunteers are currently working 
to finish the "world's largest maze," 
which will be located in a seven acre 
field of corn. The paths, which will 
vary in widlh from five to 15 feet, 
will twist and tum around various 
designs associated with Iowa and the 
state's sesquicentennial celebration. 
. The main design for the paths is 

the symbol that was previously used 
with the promotional slogan "Iowa -
A Place to Grow." Tile word "fowa" 
and .. 150" also will be spelled out in 
the maze. 

Iowa State architectural student 
Lori Berglund assisted with the 
design of the maze and headed the 
design committee. The Ankeny 
LutherlU! Church, of which Lori is a 
member, is sponsoring the project. 
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The field of com was cross-plant
ed in order to make it very thick, and 
the paths where the com is to llr' 
removed were marked. After all the 
paths are marked, an aerial photo 
shot will be taken to make sure the 
paths line up correctly. Volunteers 
are planning to use a roto tiller to 
clear the corn. 

More than two miles of paths 
make up the maze, which could baf
tle some visitors for many hours. But 
there is a trick to reaching the end of 
the maze with ease - just brush up 
on Iowa history before going to the 
maze. Iowa history clues can be 
found throughout the maze to assist 
those less fortunate in finding the 
exits. Several numbered posts with 
walkie talkies are located around the 
maze and can be used "in despera• 
tion," said Paul Christoffers, who 
directs the project. Directions will be 
given to the next numbered post or 
the exits. 

Of course, there is a benefit in 
finding the dead ends. Christoffers 
said he hopes to place promotional 

clues at the dead ends, and offer 
some sort of prize to people who can 
correctly identify a certain numberof 
dues after exiting the maze. 

For a real challenge, visitors 
should wait to visit after the cont bas 
grown to maximum height, whlch 
should occur around July 15. At the 
opening on July 4, the corn wm 
probably have grown only to waisir 
level. 

The main purpose of the project is 
to raise funds for non-profit organi
zations. A group can earn money by 
selling tickets to the maze, by volun
teering to work at the grounds. or 
both. 

The Amazing Maize Maze ~ 
scheduled to open on July 4 and wUJ 
remain open lo the public every 
weekend into September. Hours will 
be from 10 a.m. to 6 p.m. and admls-
sion will be $6 per person, All pro
ceeds will go to non-profit organiza
tions. There are still openings for 
groups that woulq Uke to use the 
fund raising opportunity. Contact 
John Christoffers at I-800-965-9921. 
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figure legend: 
The size of each master chromosome is shown in parenthesis. All the known genes are indicated on the outside of each master circle. The repeats 
are represented by open boxes inside the circles, and the size of each (in kb) is indicated by a number. The integrated forms of plasmids R1 and S2 
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IX. ZEALAND 1996 

This is a summary of selected genetic research information reported in recent literature and in this News Letter. Numbers preceded by 'r" 
refer to numbered references in the Recent Maize Publications section. New loci ('first report'); mapping; cloning; sequencing; and trait inheritance 
information that have be1::n added this year to the Maize Genome Database (Maizedb) have been extracted here. The term 'genelist' refers to 
references with information central to the uniqueness and designation of the gene. Note that the Symbol Index in the back of this issue also 
accesses journal publications containing studies on gene expression, gene products, developmental control, physiological responses, techniques, 
etc. Comments or suggestions on these research aids are always welcome. 

--assembled by an unrestricted, Prof. Ligate Committee (Ed Coe, Mary Polacco, Pat Byrne, and Georgia Davis) 

CHROMOSOME 1 
1 L3 G-band: umc58 hybridization in situ; also to 5L5 and 9L6 -

MNL70:70 
adh1 orthology, phylogenetic analysis --r553 r554 r907 r1000 
Adh1-#2, Adh1-1F, Adh1-1S, Adh1-1S, Adh1-3F1124r53, Adh1-54S, 

Adh1-CO159, Adh1-/L14H, restriction map --r456 r999 r1000 
amp1 -11.6-phi102-1.2-umc12B(aga) -2.2-phi002 -17- glb1(aka 

phi055) -8.8-umc107a --MNL70:50 
an1 sequence:amplification primers; an1-891339::Mu2, clone isolation 

--r72 
bz2, promoter --r896 
dB, orthology --r907 
Ds-1 L3 at bz2 --r633 
Ds-1 L 1 left of bz2 --r633 
Ds-1S1, Ds-1S2, Ds-1S3 left of dek1 --r633 
Ds-1S4 right of dek1 --r633 
hm1, map location --r589 
hmp1, first report; before TB-1Sb(1) --MNL70:14 
ht4, first report; near T1-9c(1S.48) and T1-9(5622)(1 L.10); probably on 

1 S --r137 
isu152 - isu74 - bn/5.59- isu116-umc33a - npi236 - umc37a --r513 

r684 
knox1, genelist, sequence, evolution, map location --r436 
knox3, sequence, evolution, knox3 -1.1-kn1 --r436 
knoxB, genelist, sequence, evolution, map location --r436 
msv1, map location --r589 
olc1, first report --r979 
pds'-L39266, sequence; single site maps at vp5 --r327 
pg15, orthology --r907 
phi1, sequence, clone isolation --r492 
ps/6, bins 1.06-1.07 --r125 
ps/13, bin 1.12 --r125 
ps/18, sequence, bin 1.06 --r125 r888 
ps/24, bin 1.1 --r125 
ps/25, sequence, bin 1.04 --r125 r888 
ps/33, sequence, bin 1.12 --r125 r888 
ps/44, bin 1.11 --r125 
SSAs: amp1 -11.6-phi102-1.2-umc128(aga) -2.2-phi002 -17-glb1(aka 

phi055) -8.8-umc107a ; bn/B.29a -20.7- phi064 -3.8-bn/6.32; 
npi234 -14.3-p1(aka phi095'J -12.8-isu61; npi236 -7.6-phi039 -1.4-
umc37a; umc76 -15.6-npi268 -2.6- ts2(aka phi001); tub1(aka 
phi056) -9.9-bn/5.62a -19.5- umc157(chn); umc76(gne) -15.6-
npi286 -2.6-ts2(aka phi001) -4.6-umc26a --MNL70:50 

tb1: T1-3(5267)(1)-tb1 - T1-3(5242)(1) --MNL70:3 
tb1, map data --r214 
ts2: umc76-15.6-npi268 -2.6-ts2(aka phi001) --MNL70:50 
tub1(aka phi056) -9.9-bn/5.62a -19.5-umc157(chn) --MNL70:50 
uaz151(sar), uaz205b(hsp18), uaz20B(mta), uaz22Bd(his2b), 

uaz282(pop) located to 1 L --r803 
uaz24Ba(his3) located to 1 S --r803 
uaz249a(ubf9), uaz272(zp19) near 1 centromere --r803 
umc89b, umc106a, map location --r714 

CHROMOSOME 2 
abph1, genelist: umc6-b1-B-(abph1, umc34)-13-umc131 --MNL70:2 
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agp2, sequence --r293 
akh2, map location --r613 
ask2, map note --r612 
81-Peru, restriction map --r679 
bet/1 map note, sequence;Betl1-Z49203 sequence --r377 
ck2::umc36b-9.6-ck2; umc36b-4.9-ck2, map note --MNL70:62 
csu6a(sam), map location --r505 
dksB near 2S-36 in BNL Rls; near npi290b, map note --MNL70:20 
Ds-2S1 before b 1 --r633 
Ds-2S2, variegation for 81-b, possibly an unstable chromosome --r633 
Ds-2S3, Ds-2S4 at 81-Peru --r633 
fht1, sequence, first report, fht1 -11.5-php2056Bb -10.7-umc53a -

r199 
g/14 right of TB-2Sb, left of TB-1Sb-2L4464, linkage with T2-9b wx1, 

map note --r781 
g/2 -0-ias6; g/2 -7.8-umc6, map data --r781 
ht1, map location --r589 
knox4, genelist, sequence, evolution, map location --r436 
npi271a, map location --r714 
ole1 near umc134b, bin 2.04-2.05, map note --r510 r511 
ps/1, bin 2.07 --r125 
ps/11, sequence, bin 2.04-2.06 --r125 r888 
ps/31, bin 2.05-2.06 --r125 
ps/32, sequence, bin 2.07 --r125 r888 
rf3: whp1 -8.9-rf3-8.9-bn/17.14; umc49a -4.8-rf3-2.7-OPE0B-1.2kb 

-10-umc36a --MNL70:24 70:69 
se1: umc49a -27-php20581b -13.4-umc36a-12.1-se1 in 205' F2:F3, 

fully classified, map data --r860 
SSAs: umc131(pext) -8-nc003 -9.1-umc36b; umc34 -6.3-prp2(aka 

phi083) -6.4-phi10012; umc53a(gag) -2.2-phi098 -0.6-npi254a 
-11.6-bn/7.49c(hmd); umc98a -16.3- phi127 -31- umc4a -
MNL70:50 

tpi2, map location --r714 
uaz124a(rpL7) located on 2, map note --r803 
uat191(rap), uaz194a(ugu), uaz194b(ugu), uaz228a(his2b), 

uaz232(sci), uaz235(px), uaz269b(kri), located to 2L, map note 
r803 

uaz236b(ser) located to 2S, map note --r803 
uaz265a(sbe) near 2 centromere, map note --r803 
umc137a, map location --r714 
umc32c(cgn), map location --r505 
umc44b, map location --r714 

CHROMOSOME 3 
a1, promoter --r896 
apomixis (APO) segment of Tripsacum dactyloides left of csu32, 

csu56b(ohp), csu134c, csu58 on 3L, and right of loci on 6L (see), 
map note --r77 4 

atp 1, orthology --r907 
bet1 tightly linked to bn/13.05b, map note --r986 
bn/8.35a, map location --r714 
Ds-3L 1, Ds-3L2 left of a 1 --r633 
eB, orthology --r907 
got1, map location --r714 
gst4: umc29d -2.6-tpi4(aka phi029) -12.9-umc175 -7.8-[umc1Ba & 



gst4(aka phi073)] -4.6-umc26a --MNL70:50 
hox3, evolution --r436 
fg3, sequence, evolution --r436 
me1, map location --r714 
mv1, map location --r589 
nl*-1517 before TB-3Sb(3), map note --MNL70:15 
OPN20-675, map location --MNL70:24 
pgd2, orthology --r907 
ps/4, sequence, bin 3.05 --r125 r888 
ps/5, sequence, bins 3.01-3.03 --r125 r888 
ps/10, sequence, bin 3.04 --r125 r888 
ps/16, sequence, bin 3.06 --r125 r888 
ps/28, sequence, bin 3.05 --r125 r888 
ps/47, sequence, bin 3.02-3.04 --r125 r888 
rf•-nf81-67-9, association with T3-9c and T3-9{8447), map note -

MNL70:65 
rp3, orthology --r907 
rp3: lg3 -3-(rg1, rp3); (npi114b, umctoa, umc161b)-2· (rp3, php20802) 

-2- umc102; umc92a-6-npi219 -2-(umc10a, php20509, php20576, 
lg3) -2- npitt4b -2- (rp3, rg1) -1- umc102-1-(umctBa, bnl6.06a, 
php20508) -2· umc26a-8-bn/5.37a --r589 r769 

SSAs: umc29d -2.6- tpi4(aka phi029) -12.9- umct75-7.8-[umc1Ba & 
gst4(aka phi073)]-4.6- umc26a; phi036-14.1-umct0a-2.3-phi053 
-1.6-umct02 --MNL70:50 

tet: umctB-15-tet, QTL-6.3-bn/8.0t -11.2-umc60 --r214 
Te1-Zpa, evolution --r214 
trut on 3L, map note --r214 
uazt6te(elf), uazt98a(rpL10), uaz2t8b{gss), uaz243a(atp) located to 

3L, map note -r803 
uaz189{rpl5), uaz249b(ubf9) near 3 centromere, map note --r803 
uaz2t0(hsptB) located to 3S, map note --r803 
umc50: sucrose content QTL near umc50, OPN20-675 in 

W6786/IL731a F2:3, map note --r860 MNL70:24 
vpt, clone isolation --r950 
wsm2, map location --r589 

CHROMOSOME 4 
adh2:umc31a -4.9-adh2(aka nc004) -5.1-bn/5.46 --MNL70:50 
akht, map location --r613 
bm3 sequence, bn/5.46 -21.4-bm3 -8.3-umc47; bn/5.46 -8.5-bm3 -2.1-

bn/15.45 in two Pioneer maps, map note --r928 
bx1, map location --r589 
c2, promoter --r896 
cat3: umct69 -3.1- cat3(aka phi006) -1- ncr(b70b); isu77 -17.8-

umc111a -23.5-cat3(aka phi076) --MNL70:50 
cyp2, cyp3, cyp4, cyp5, sequence cyp3 -0.1- cyp2 -1.1-cyp4 -4.1-

cyp5 --r273 
Ds-4St, variegation for bt2 
Ds-4L3 at C2 --r633 
Ds-4L 1, Ds-4L4, Ds-4L5, Ds-4L6, Ds-4L7 right of c2 --r633 
dzrt, restriction map; contained by z1c{zp22); rz329 -6.6-dzr1 -1.1-

php20725, map note --r155 
g/4, orthology -r907 
gpct: umc49d -4.9-zp19/22(pms2)(aka phi096) -2.5-gpc1(aka nc005'J 

-24.9- umc66a-29.2-ssu1 {aka phi093) --MNL70:50 
knox7, sequence, evolution, map location --r436 
lat: sost -21.3-lat -7.9-sut, map data --r215 
ms••Lf89: umc158-ms*-L/89-umc15a, map note ·-MNL70:30 
mtlt(aka phi072) -6.2- umct23 -11.3-php2007t -23.4-bn/5.46 -11.4-

zp22.1 {aka phi074) -11.1· bn/15.45 -MNL70:50 
ncr(b70b): umc169-3.1-cat3(aka phi006) -1-ncr(b70b) --MNL70:50 
nk1 (ck): bn/5.46 -4.5-nk1 (ck), map note --MNL70:62 
ps/26, bin 4.11 --r125 
ps/35, sequence, bin 4.03-4.04 --r125 r8BB 
ps/45, bin 4.03-4.05 --r125 
ps/75, bin 4.09-4.1 --r125 

rp4, map location --r589 
sos1, origin; sos1 -21.3- la1 -7.9-sut; php20075 -4.4- sost -9.6-

bn/5.46, php2D725a -2.6-sost -3.7-bn/5.46, map data --r215 
SSAs: umc3ta-4.9-adh2(aka nc004) -5.1- bn/5.46; mtlt(aka phi072) 

-6.2-umc123 -11.3-php2007t -23.4- bn/5.46 -11.4-zp22.t(aka 
phi074) -11.1- bn/15.45; umc169 -3.1- cal3{aka phi006) -1-
ncr(b70b); isu77 -17.8- umct 1 ta -23.5-cat3(aka phi076); umc49d 
-4.9· zp19/22{pms2)(aka phi096) •2.5- gpc1(aka nc005) -24.9-
umc66a -29.2-ssul{aka phi093) ·-MNL70:50 

su1, sequence --r389 
uaz44a(zp19), uazt30b{tlk), uaz145{ahh), uazt57(rpl19), uazt61d(elf), 

uaz171, uaz222, uaz228c(his2b), uaz247(ubi), uaz252a(ptk), 
located to 4L, map note --r803 

uaz44b(zp19), uazt49(zp19), uazt84(hfi), uazt85(zp22), uaz280a(ppp) 
located to 4S, map note --r803 

uazt95(ms), uaz218a(gss), uaz246(vsp) located near 4 centromere, 
map note --r803 

uwo3, map note --r525 
uwoB, map note --r525 
zp19/22c/uster2, restriction map --r548 

CHROMOSOME 5 
5L5 G-band, umc58 hybridization in situ; also to 1 L3 (mapped site) and 

9L6, map note --MNL70:70 
a2, promoter --r896 
cat1, promoter --r968 
Ds-5S1, Ds-5S2 right of a2 --r633 
Ds-5L 1 left of bt1 --r633 
g/25 lelt of TB-5Sc, map note --r781 
g/8, orthology --r907 
g/8 -0- ias3, map data --r781 
gln4, map location --MNL70:50 
gln4: umc126a -B.4-phi101 -13.B-(umc108, phi048) -2.6-gln4(aka 

phi085) -38.7- php10017 --MNL70:50 
got2, orthology --r907 
incw1, sequence --r798 
knox10, sequence, evolution, map location --r436 
knox6, sequence, evolution, map location --r436 
ms13, orthology --r907 
ms5, orthology --r907 
ncr(b70a), map location --MNL70:50 
ohp2 (aka nc007)-14.3-umc147a-19- umc107b --MNL70:50 
ole2: bn/6.25 -36.1-o/e2(aka phi113) -20.2-php20872 - MNL70:50 
ole3 near npi213, bin 5.03-5.04, map note --r511 
pgm2 -9.9-rab15(aka phi008) -12.8-bn/7.56 --MNL70:50 
psil, bin 5.03 --r125 
ps/8, sequence, bin 5.04-5.05 --r125 rBB8 
ps/20, bin 5.03 --r125 
ps/21, sequence, bin 5.05 --r125 r888 
ps/39, sequence, bin 5.04-5.05 --r125 r888 
ps/43, bin 5.03 --r125 
rab15: pgm2-9.9· rab15(aka phi00B)-12.8-bn/7.56 --MNL70:50 
rent: bni5.40 -2- phi107 -2,3- umc51a •2.3-phi087 -12.5- rent(aka 

isuta, -12.7-umc68 -2.6-phi128 --MNL70:50 
sh4, orthology --r907 
SSAs: umct26a -8.4-phi101 -13.8-(umc108, phi048) -2.6-gln4(aka 

phi085) -38.7-php10017; ohp2 {aka nc007) -14.3-umc147a -19-
umc107b; bn/6.25-36.1- ole2(aka phi113) -20.2-php20872; pgm2 
-9.9-rab15(aka phi00B) -12.8-bn/7.56; bni5.40 -2· phi107 -2.3-
umc51a -2.3-phi087 -12.5- ren1(aka isu10) -12.7· umc68 -2.6-
phi128 --MNL70:50 

uaz130c{tlk), uaz201 (tua), uaz205a{hsp18), uaz215b(odo), 
uaz219(hsp), uaz226(cat1), located to 5S, map note --r803 

uaz132a(dts), uaz186, uaz215a(odo), uaz238(ppi), uaz248b(his3) 
located to 5L, map note --r803 

uaz15B{alt), uaz159 located on 5, map note --r803 
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uaz190(gpc) located near 5 centromere, map note --r803 
umc39c, map location --r714 
xet1, sequence --r757 

CHROMOSOME 6 
6L1 G-band, umc65 hybridization in situ (map site umc65a), map note --

MNL70:70 
agp1: umc62 -4.4-phi123-12.1-agp1 --MNL70:50 
apomixis (APO) segment of Tripsacum dactyloides right of umc71a, 

umc28, csu68a (on 6L), left of markers on 3L (see), map note -
r503 r774 

bn/5.47a - php10016-npi280-umc62, map --r513 r684 
dzs23, sequence --r855 
fdx1 (aka phi075) -1.2-phi106 -20.8-npi235a -7.7-phi077 -47.9-p/1 --

MNL70:50 
hex2, map location --r714 
hox2, evolution --r436 
110: T6-9e(6) - 110-T6-9(043-1)(6), map note --r121 
112: T6-9e(6) -112- T6-9(043-1)(6), map note --r121 
112: T4-6(8428)(6) - 112 - T4-6(6623)(6), map note --r121 
112: T6-9(6019)(6) -112 - T6-9(043-1)(6), map note --r121 
115: distal to T6-9(043-1)(6), map note --r121 
Int, oil QTL lightly linked to umc65a, Int, map note --r17 
maltose content QTL near umc59a in W6786/IL731a F2:3, map note -

r860 MNL70:24 
mdh2, map location --r714 
mdm1: umc85 -1.9-pot -.03-csu70(gfu) -0.2-(mdm1, nor) -0.7-

bn/6.29a -0.1-npi235 -3.2-y1; jc1270 -2.5-npi245 -1.6-(umc85, 
pot) -0.5-(mdm1, not) -0.5-bn/6.29a -0.5-npi235 -0.8-npi101 -4.3-
umc59a --r813 

f'f51: T6-9e(6) - ms1 - T6-9(043-1 )(6), map note --r121 
pdkt, evolution, structure --r579 
pdkt: uaz127a(pdk) located to 6L; umc85 -6.8- phi077 -14.7-phi126 

-58-umc65a -4.8-pit (aka nc009; nc010) -2-phit24 -5.9-umc21 
-1.6-phit29 -15-pdkf(aka nc012)-7.5-bn/5.47a -- r803 MNL70:50 

pgdt, map location --r714 
pot: umc85-1.9-pot -.03-csu70(gfu) -0.2-(mdmt, not) -0.7-bn/6.29a 

-0.1-npi235 -3.2- yt; jc1270 -2.5-npi245 -1.6-( umc85, pot) -0.5-
(mdmt, not) -0.5-bn/6.29a -0.5-npi235 -0.8-npit0t -4.3-umc59a, 
map data --r813 

pslt5, bins 6.02-6.03 --r125 
ps/29, sequence, bins 6.04-6.05 --r125 r888 
rf'-nf79-21-27, association with T6-9(4505) and T6-9(4778), map note 

--MNL70:65 
rhmt, rhm2: rhmt -9.1-rhm2; npi245, umc85, rhmt before TB-6Sa; 

bn/6.29a, umc85 after TB-6Sa, map data --r813 
s1: T6-9e(6) - sit - T6-9(043-1 )(6), map note --r121 
SSAs: umc62-4.4-phi123-12.1-agpt; fdx1 (aka phi075) -1.2-phit06 

-20.8-npi235a -7.7-phi077 -47.9-pit; umc85 -6.8-phi077 -14.7-
phit26 -58-umc65a -4.8- p/t(aka nc009; nc010) -2-phit24 -5.9-
umc21 -1.6-phi129-15· pdkt(aka nc012) -7.5-bn/5.47a; umc132a 
-3.6-t/kt(aka phi070) -23.7- umc62 --MNL70:50 

tlkt, sequence --r951 
tlkt: umc132a -3.6-tlk1 (aka phi070) -23.7- umc62 --MNL70:50 
uaz161a(elf), uaz220(elf), uaz243b(atp), uaz244a(prh), uaz265b(sbe), 

uaz269d(kri) located to 6L, map note --r803 
uaz197a(cdpk), uaz227(end), uaz233b(act), uaz237b(prc), located 

near 6 centromere, map note --r803 
uaz197b(cdpk), uaz233d(act), located to 6, map note --r803 
uazB0(iron), uaz206(uce), uaz269c(kri), located to 6S, map note 

r803 
UBC28t-900, UBC425-700, map --MNL70:24 
w15: cent6 - w15 - T6-9e(6), map note --r121 
wsmt, map location --r589 
yt: T6-9e(6) - yt -T6-9(043-1)(6), map note --r121 
y1: T4-6(8428)(6) - yt - T4-6(6623)(6), map note --r121 
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y1 right of T4-6(055-8)(6) and T6-9(6019}(6), map note --r121 

CHROMOSOME 7 
bn/8.44a -3.1-umc35 -1.4-uaz230c(aka phi082) --MNL70:50 
cyp6: php2058ta(ext) -15.1- o2(aka phi057) -9.6-cyp6(aka phi034) 

-6.3-umc5b --MNL70:50 
Ds-7L2 probably left of o5 --r633 
git -12-umc116a, map data --r781 
gzrt near umc35 by bulk segregant analysis, map note --r190 r537 
015 near umc35 by bulk segregant analysis, map note --r190 
o2 (aka phi057)-10-bnlt5.40-10.2-umc98b --MNL70:50 
o2, sequence, microsatellite, evolution --r337 
oect7'-Z26824: php15037-18.4-oect7"(aka phi1t4) -5.9-php20746 

-21.9-umc56 --MNL70:50 
phi069 -19.4-phi043 -2.9-umcf 68-2.3-( umc35 phi051) --MNL70:50 
ps/23, sequence, bin 7.03 --r125 r888 
ps/27, bin 7.03-7.04 --r125 
rip2, sequence: bn/8.32 - rip2 - bn/7.61, map note --r60 
rst, sequence, evolution, map location --r436 r782 
SSAs: bn/8.44a -3.1- umc35 -1.4- uaz230c(aka phi082); 

php20581a(ext)-15.1-o2(aka phi057) -9.6- cyp6(aka phi034) -6.3-
umc5b; o2 (aka phi057) -10-bnlt 5.40 -10.2-umc98b; php 15037 
-18.4-oec17"(aka phit 14) -5.9-php20746 -21.9· umc56; phi069 
-19.4-phi043·2.9-umc168-2.3-(umc35phi051) --MNL70:50 

uaz119b(rpS6), uaz22t (his2a), uaz224(eif2}, uaz225(/ox), 
uaz233c(act), uaz245(gbp), uaz91(ndk) located to 7L, map note -
r803 

CHROMOSOME 8 
8L7 G-band, umc65 hybridization in situ (map site umc65d), map note 

--MNL70:70 
act1: bn/13.05a-18.9-php10040-25.5-actt(aka phitt5)-7.5- bn/9.08 

--MNL70:50 
bn/5.62c, map location --r751 
bn/9. tt(lts), map location --r714 
caat1, genelist --r803 
gpa 1, promoter --r222 
gst1: umcl-14.6-gstt(aka phi0t5) -3.9-npi107 --r751 MNL70:50 
gst/1B, map location --r751 
hox4, first report --r454 
ht2, map location --r589 
htnt, map location --r589 
knox11, sequence, evolution, map location --r436 
knox5, sequence, evolution, map location --r436 
pslt9, sequence, bin 8.04-8.05 --r125 r888 
ps/38, bin 8.02 --r125 
ps/42, bin 8.01 --r125 
rf'-nf79-23-27 association with T8-9d and TB-9(043-6), map note -

MNL70:65 
rf4, orthology --r907 
ript: bn/9.08 -4.6-ript (aka phi014) -24.2-umc48; umc92b -0.6-phit 19 

-11.4-umc124-4.1-umct20a -1.8-phi125 -12-phit21 -0.9-ript (aka 
phi060 & phi0t4) -14.3-umc89a --MNL70:50 

SSAs: bnlt3.05a -18.9-phpt0040 -25.5- actt(aka phit15) -7.5-
bn/9.08; umcl-14.6-gst1(aka phi0t5) -3.9-npit07; bn/9.08 -4.6-
ript (aka phi014) -24.2-umc48; umc92b -0.6-phi1 t9 -11.4-umc124 
-4.1-umc120a -1.8-phit25 -12-phi12t -0.9- rip1(aka phi060 & 
phi014) -14.3- umc89a --MNL70:50 

uazt 19a(rpS6), uazt 27b(pdk), uaz249d(ubf9), uaz252b(ptk) located to 
BL, map note --r803 

uaz193(rip), uaz233a(act), uaz244b(prh), uaz249c(ubf9), uaz269a(kri) 
located near 8 centromere, map note --r803 

uaz93a(tpi),uaz243c(atp) located to BS, map note --r803 

CHROMOSOME 9 
9L6 G-band, umc58 hybridization in situ; also to 1 L3 (mapped site) and 



5L5, map note --MNL70:70 
acp1, map location --r714 
bn/10.13b, map location --r714 
bz1, promoter --r896 
bz1, orthology --r907 
c1, orthology --r907 
c1, regulatory site --r918 
c1 -6-phi122 -1.9-sh1(aka phi044) -3.8-isu136b -0.4-bz1 (aka phi017) 

-19.6-isu124 -6.8-bn/3.06 -0.3-wx1(aka phi061) -6.2-pep1(aka 
phi065) -1.5-umc153 -15.6-sus1(aka phi032) -2.9- isu9Ba -
MNL70:50 

d3, map note --r889 
d3, sequence --r973 
Ds-9S1 probably right of c1 --r633 
hm2, map location --r589 
hsk1: wx1 -2- d3 -0.5-hsk1(aka uaz144) -1-uaz166c, using d3 clone 

and CM37 x T232 Rls, map --r973 
knox2, sequence, evolution, map location --r436 
koln2b(hox), genelist --r454 
ms2, orthology --r907 
ms45, clone isolation; located to chr 9, map note --r13 
npi209a -2.1-bn/14.28a -14-phi108 --MNL70:50 
npi404c, map location --r714 
pep1: umc113a -3.7-sh1(aka phi044) -5- bz1(aka phi017) -20.5-

umc105a -12.5-wx1(aka phi061) -4.7-pep1(aka phi065) -1-umc81 
-14.8-sus1(aka phi016) -5.4-umc95; c1 -6-phi122 -1.9-sh1(aka 
phi044) -3.8-isu 136b -0.4-bz 1 (aka phi017) -19.6-isu 124 -6.8-
bn/3.06 -0.3-wx1(aka phi061) -6.2-pep1(aka phi065) -1.5-umc153 
-15.6-sus1(aka phi032) -2.9-isu9Ba --MNL70:50 

phi108: npi209a -2.1-bn/14.28a -14-phi108 --MNL70:50 
php10005 - isu136 - bn/3.06 - isuBB-umc114-isu110, map --r513 r684 
ps/3, bin 9.02 --r125 
ps/22, sequence, bin 9.04 --r125 r888 
ps/46, bin 9.07 --r125 
rld1 -0-csu54b, map note --MNL70:14 
sem1 (was dek'-Mu1364) is before TB-9Sd(9); re-tests contradict prior 

indication of 9L, map note --MNL70:14 
SSRs: c1 -6-phi122 -1.9-sh1(aka phi044) -3.8-isu136b -0.4-bz1(aka 

phi017) -19.6-isu124 -6.8-bn/3.06 -0.3-wx1(aka phi061) -6.2-
pep1(aka phi065) -1.5- umc153 -15.6-sus1(aka phi032) -2.9-
isu9Ba; npi209a -2.1-bn/14.28a -14-phi108; umc113a-3.7-sh1(aka 
phi044) -5-bz1(aka phi017) -20.5-umc105a -12.5-wx1(aka phi061) 
-4.7-pep1(aka phi065)-1-umc81 -14.8-sus1(aka phi016) -5.4-
umc95 --MNL70:50 

sus1, sequence, orthology --r801 
uaz119c(rpS6), uaz152(sdh), uaz231 (zag), uaz236a(ser), uaz280b(ppp) 

located to 9L, map note --r803 
uaz161b(elf), uaz237a(ser) located to 9S, map note --r803 
uaz223(vpp) located near 9 centromere, map note --r803 
v28, orthology --r907 
wx1, orthology --r907 

CHROMOSOME 10 
csu14Ba(clx), map location --r505 
Ds-10L2 left of r1 --r633 
Ds-10L4 left of r1 --r633 
gdcp1 -7- npi285; gdcp1 -18-bn/3.04 (in CM37 x T232); gdcp1 is 

included in the terminal def(bn/3.04-Rp5-Rp1-M), which is distal to 
npi371c (=npi422), map note --MNL70:15 

g/21, orthology --r907 
glu1, map location --r714 
glu1: (phi041 phi117) -25.8-npi285(cac) -1.5-phi063-12.4-phi059 -1.2-

plm/SU167 -9.8-umc130(ntc) -6- phi054 -2.3-glut -4.8-phi050 
-1.7-umc64 -2.6-hsp90'(aka phi071) -0.8-mgs1(aka phi062) -19-
umc44a -2-phi035-30.7-npi245b --MNL70:50 

gstl/A, map location --r751 

mini-1 chromosome includes oy1, map note --MNL70:16 
nac1: uaz250(nac) located to 10L, map note --r803 
nac1: umc64 -0.9-nac1(aka phi084) -1.5-npi303 --MNL70:50 
P, q, S, S1, S2, sigma, sequence; rt, structure, evolution --r938 
ps/9, bin 10.03 --r125 
ps/48, bin 10.07 --r125 
rlc1, map note --r508 
rp1, orthology --r907 
SSRs: (phi041 phi117) -25.8-npi285(cac) -1.5-phi063 -12.4-phi059 

-1.2-plm/SU167 -9.8-umc130(ntc) -6- phi054 -2.3-glu1 -4.8-
phi050 -1.7- umc64 -2.6- hsp90'(aka phi071) -0.8- mgs1(aka 
phi062) -19- umc44a -2- phi035 -30.7- npi245b; umc64 -0.9-
nac1(aka phi084) -1.5-npi303 --MNL70:50 

uaz100(prl) located to 10S, map note --r803 
uaz124b(rpL7) located on chr 10, map note --r803 
uaz99(fab1),uaz228b(his2b) near 10 centromere, map note --r803 
uaz242(clp), located to 10L, map note --r803 
vp13 on 10L, map note --r581 
wsm3, map location --r589 

UNPLACED 
Ac evolution, orthology --r378 r553 r554 
acc'-U19183, sequence --r233 
adf1, first report, sequence --r752 
aec1, aec5, first report --r43 
apx2, sequence, first report· --r906 
arf1, sequence, first report --r927 
barnase, barstar, genelist --r909 
ben2, first report --r103 
bre 1, sequence --r262 
cal'-X77396, first report, sequence --r110 
Cin4, genelist --MNL70:59 
colonist1, colonist2, first report --MNL70:59 
cys'-XB5803, sequence, first report --r104 
doppia, genelist, sequence --r938 
Os, structure, origin --r292 MNL70:54-55 
fer1, fer2, restriction maps --r265 
gbf1, sequence, first report --r197 
gbp'-D31905, sequence --r415 r416 
gbp'-D31906, sequence --r415 r416 
gdh*-D49475, sequence --r761 
geb1, genelist --r981 
g/26, first report --r781 
grf1, sequence, first report --r196 
gst2, genelist, sequence --r367 r394 
hmg1, evolution --r308 
Hopscotch, sequence, first report --r954 
hsz1, first report --r163 
ivr1, sequence, first report --r983 
les'-D101, first report --r398 
LINE, genelist --MNL70:59 
mh/1, first report --MNL70:14 
ms25, ms26, first report --r541 
ms27, genelist --MNL70:30-31 
mtl'-X85184, sequence --r160 
mt/2, sequence, first report --r950 
MuDR, promoter, sequence --r68 r347 
pcna1, first report, sequence --r539 
pex1, clone isolation --r753 
pld1, sequence, first report --r899 
pmg1, evolution --r303 
ppi1, sequence --r564 
psei2, sequence, first report --r1 
px10, px12, genelist --r444 
rp/16, first report --r67 
rp/3, genelist --r67 
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rps6, genelist --r67 
rtcs1, first report --MNL70:23 
sed1, sed2, first report --r824 
see1, see2, see3, see4, first report --r824 
Sleepy, sequence, first report --r973 
snr14, sequence, first report --r501 
Spm, structure --r688 
lha3, first report --r54 
thp•·D45402, lhp•·D45403, sequence --r221 
lhp*-Mp708, sequence --r396 
lhp*-XB2185, sequence --r160 
lrm1, sequence, first report --r890 
lrp 1, sequence, first report --r4 72 
lubg1, sequence, first report --r538 
zem 1, sequence, first report --r606 
Zeon1, genelist, restriction map --r373 
zlp1, first report --r563 
ZLRS, clone isolation --r14 

MITOCHONDRION 
coxll(mtNA), promoter --r636 
mat-r(mlNA), sequence --r878 
nad1-D(mtNB), sequence --r878 
OPAC-02(1053)(mt), first report --MNL70:12 
OPAC-02(6B0)(ml), first report --MNL70:12 
OPAN-05(370)(ml), first report .. MNL70:12 
OPAN-05(6B0)(ml), first report --MNL70:12 
OPG-19(290)(ml), first report --MNL70:12 
OPT-09(B00)(mt), first report --MNL70:12 
OPT-12(1230)(mt), first report --MNL70:12 

CHLOROPLAST 
28 kb inversion, sequence --r561 
70S rRNA operon-1, sequence --r561 
70S rRNA operon-11, sequence --r561 
atpA, sequence --r561 
atpB, sequence --r561 
alpB-rbcL spacer, sequence --r561 
alpBE, sequence --r561 
atpE, sequence --r561 
atpF, sequence --r561 
atpH, sequence --r561 
alp/, sequence --r561 
cemA, sequence --r561 
clpP, sequence --r561 
infA, sequence --r561 
Inverted Repeat /, sequence --r561 
Inverted Repeat II, sequence --r561 
L20 operon, sequence --r561 
L23-I operon, sequence --r561 
L23-II operon, sequence --r561 
L33 operon, sequence --r561 
ndhA, sequence --r561 
ndhB-1, sequence --r561 
ndhB-11, sequence --r561 
ndhC, orthology, sequence --r561 r611 
ndhCndhKndhl operon, sequence --r561 
ndhD, orthology, sequence --r561 r611 
ndhE, sequence --r561 
ndhF, sequence --r561 
ndhH, sequence --r561 
ndhl, sequence --r561 
ndhK, sequence --r561 
ORF123, sequence --r561 
ORF133, sequence --r561 
ORF137, sequence --r561 
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ORF139, sequence --r561 
ORF159, sequence --r561 
ORF170, orthology, sequence --r561 r611 
ORF173, sequence --r561 
ORF185, sequence --r561 
ORF23, sequence --r561 
ORF241, sequence --r561 
ORF29, sequence --r561 
ORF31petEORF42, sequence --r561 
ORF321, sequence --r561 
ORF34, sequence --r561 
ORF38, sequence --r561 
ORF40, sequence --r561 
ORF42, sequence --r561 
ORF46, sequence --r561 
ORF49, sequence --r561 
ORF58, sequence --r561 
ORF62, sequence --r561 
ORF63, sequence --r561 
ORF69, sequence --r561 
ORF75, sequence --r561 
ORF99, sequence --r561 
pelA, sequence --r561 
pelB, orthology, sequence --r561 r611 
petD, sequence --r561 
pelG, orthology, sequence --r561 r611 
pell, sequence --r561 
psaA, sequence --r561 
psaB, sequence --r561 
psaC, sequence --r561 
psaCndhD operon, sequence --r561 
psal, sequence --r561 
psbA, sequence --r561 
psbB, sequence --r561 
psbBpsbFpelBpetD operon, sequence --r561 
psbC, sequence --r561 
psbD, sequence --r561 
psbDpsbC operon, sequence --r561 
psbE, sequence --r561 
psbEpsbFpsbLORF40 operon, sequence --r561 
psbF, sequence --r561 
psbH, sequence --r561 
psbJ, sequence --r561 
psbK, sequence --r561 
psbL, sequence --r561 
psbM, sequence --r561 
psbN, sequence --r561 
psbR, sequence --r561 
psb T, sequence --r561 
r16-/, sequence --r561 
r16-II, sequence --r561 
r16-r23 spacer-I, sequence --r561 
r16-r23 spacer-II, sequence --r561 
r23-I, sequence --r561 
r23-I/, sequence --r561 
r4.5-J, sequence --r561 
r4.5-I/, sequence --r561 
r5-I, sequence --r561 
r5-II, sequence --r561 
rbcL, evolution, promoter, sequence --r509 r561 
rp/14, sequence --r561 
rp/16 exon 1, sequence --r561 
rp/16 exon 2, sequence --r561 
rp/16 inlron, sequence --r561 
rp/16, sequence --r561 
rp/2-/, sequence --r561 



rp/2-11, sequence --r561 
rp/20, sequence --r561 
rp/22, sequence --r561 
rp/23 pseudogene, sequence --r561 
rp/23-/, sequence --r561 
rp/23-11, sequence --r561 
rp/32, sequence --r561 
rp/33, orthology, sequence --r561 r611 
rp/36, sequence --r561 
rpoA, sequence --r561 
rpoB, sequence --r561 
rpoBC operon, sequence --r561 
rpoC1, sequence --r561 
rpoC2, sequence --r561 
rps 11, sequence --r561 
rps12 exon 1, sequence --r561 
rps12, sequence --r561 
rps12-I exon 2, sequence --r561 
rps12-I exon 3, sequence --r561 
rps12-I, sequence --r561 
rps 12-11 exon 2, sequence --r561 
rps12-II exon 3, sequence --r561 
rps12-II, sequence --r561 
rps 14, orthology, sequence --r561 r611 
rps15-I, orthology, sequence --r561 r611 
rps 15-11, sequence --r561 
rps16, orthology, sequence --r561 r611 
rps18, sequence --r561 
rps19-/, evolution, sequence --r561 r946 
rps19-II, evolution, sequence --r561 r946 
rps2, orthology, sequence --r561 r611 
rps3, sequence --r561 
rps4, sequence --r561 
rpsl-I, sequence --r561 
rpsl-11, sequence --r561 
rpsB, sequence --r561 
S 12-/ operon, sequence --r561 
S12-11 operon, sequence --r561 
S14 operon, sequence --r561 
S2 operon, sequence --r561 
trnA(UGC)-1, sequence --r561 
trnA(UGC)-11, sequence --r561 
trnC(GCA), sequence --r561 
trnD, sequence --r561 
trnE, sequence --r561 
trnF(GAA), sequence --r561 
trnfM pseudogene, sequence --r561 
trnfM(CAU), sequence --r561 
trnG(GCC) pseudogene, sequence --r561 
trnG(GCC), sequence --r561 
trnG(UCC) pseudogene, sequence --r561 
trnG(UCC), sequence --r561 
trnH(GUG)-I, sequence --r561 
trnH(GUG)-11, sequence --r561 
trnl(CAU)-I, sequence --r561 
trnl(CAU)-11, sequence --r561 
trnl(GAU)-I, sequence --r561 
trnl(GAU)-11, sequence --r561 
trnl(, sequence --r561 
trnL(CAA)-I, sequence --r561 
trnL(CAA)-11, sequence --r561 
trnL(UAA), sequence --r561 
trnM(CAU), sequence --r561 
trnN(GUU)-I, orthology, sequence --r561 r611 
trnN(GUU)-11, sequence --r561 
trnP(UGG), sequence --r561 

trnQ, sequence --r561 
trnR(ACG)-I, sequence --r561 
trnR(ACG)-11, sequence --r561 
trnR(UCU), sequence --r561 
trnS(GCU), sequence --r561 
trnS(GGA), sequence --r561 
trnS(UGA), sequence --r561 
trnT(UGU), sequence --r561 
trnT, sequence --r561 
trnV(GAC)-1, sequence --r561 
trnV(GAC)-11, sequence --r561 
trnV(GAC)-r16 spacer-I, sequence --r561 
trnV(GAC)-r16 spacer-II, sequence --r561 
trnV(UAC), sequence --r561 
trnW(CCA), sequence --r561 
trn Y, sequence --r561 
ycf3, sequence --r561 

OTHER INHERITANCE 
2-acetyl-1-pyrroline, 2-acetyl-tetrahydropyridine, 2-propionyl-1-

pyrroline, methods --r778 
3rd leaf height, length, width, qtl --r141 
ABA metabolism --r66 r291 r581 
abscisic acid content, evaluation(s) --r172 r496 r681 
acetylpyrazine, methods --r778 
acid detergent fiber, combining ability --r28 r572 
acid soil tolerant, physiology --r531 
ADP glucose pyrophosphorylase activity, level --r141 r142 r598 
AEC, selection --r43 
aflatoxin content --r117 r132 r317 r747 r956 
amylopectin, amylose, structure --r630 
anther culture response, genetic control --r63 r345 r388 r621 
anthesis-silking interval, abscisic acid levels --r129 r172 
anthocyanin synthesis, regulation --r95 r569 r760 
apomixis, evaluation(s) --r503 r504 r774 
arabinoxylan, methods --r595 
aroma, chemistry --r778 r977 
auxin, mechanism --r627 
biomass yield --r29 r30 r98 
bird damage, evaluation(s) --r218 
breakage susceptibility --r4 
brown midrib, chemistry, forage quality --r307 r884 
C4 photosynthesis --r323 
cadmium --r593 
calcium content, function --r62 r849 
callose, development --r504 r530 
callus browning, pest/disease resistance --r224 
callus induction, combining ability --r122 
carbohydrate concentration, leaf, stem, evaluation(s) --r230 
carbon dioxide exchange rate --r422 
cell division, regulation --r33 
cell wall thickness, pest/disease resistance --r194 
chlorophyll content --r658 r985 
cob color, food com --r264 
copper --r593 
cutin, pest/disease resistance --r317 
cytokinin 4-PU-30 --r839 
cytoplasmic male sterility --r298 
days to 3rd leaf, qtl --r141 
days to pollen, qtl --r78 r129 r714 
days to silk --r241 r686 r714 
dietary fiber content --r116 
digestibility --r 28 r38 r56 r595 r572 
DIMBOA content, pest/disease resistance --r76 
DIMBOA, activity --r759 
DIMBOA, biosynthesis --r484 
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dimethyl sulfide, sweet corn --r977 
disarticulation score, qtl --r675 
disease response --r397 r430 r838 
drought response, abscisic acid levels --r172 
drought response, endosperm protein --r34 
drought response, evaluation(s) --r597 
drought response, methods --r191 
drought response, physiology --r663 
drought response, qtl --r505 
drought response, selection --r129 r219 r491 r715 
dry matter content, 3-leaf stage, qtl --r141 
dry milling characteristics, food corn --r747 
ear growth rate --r98 
ear height --r78 r241 r368 r686 r714 
ear morphology, combining ability --r15 
ears per plant --r129 r686 r714 
embryogenesis --r111 r345 
ent-kaurene, level --r72 
EPTC --r969 
fatty acid content, genetic variability --r226 r227 
fatty acid content, stress tolerance --r673 
feeding value --r30 r56 
feeding value, methods --r39 
fertilization --r111 
ferulic acid, pesVdisease resistance --r76 r223 r224 r300 
flavor, chemistry --r127 r77B r977 
flowering, orthology --r521 
flowering, qtl --r675 r676 
fluridone, activity --r756 r800 
foliar senescence --r654 r824 
forage quality --r28 r38 r39 r140 r406 r460 r788 r922 
forage yield --r788 r1001 
fumonisin content --r208 r217 
gibberellin A 1 synthesis --r72 r750 r889 
glutathione conjugation, genetic relationship --r569 
gluten, chemistry --r524 
gluten, herbicide response --r89 
glycinebetaine deficient --r766 
glyphosate, herbicide response --r266 r712 
grain filling duration --r98 r100 
grain moisture --r294 r368 r714 
grain quality, evaluation(s) --r992 
grain weight --r16 r738 r955 
grain yield --r40 r64 r80 r81 r98 r100 r364 r411 r241 r294 r316 r321 

r322 r364 r368 r412 r566 r686 r7t 4 r848 · 
gravitropism --r49 r380 r577 r626 r842 
harvest index --r98 r100 r341 
heat units to black layer, selection --r641 
herbicide response --r203 r309 r500 r524 r569 r712 r969 
high amylase endosperm --r116 r305 
high oleic acid --r979 
histone --r534 r773 
huitlacoche production --r833 r905 r911 
husk length, pesVdisease resistance --r218 
hydroxamic acid, pesVdisease resistance --r36 r691 
indole --r591 
indole butyric acid, biosynthesis --r546 r547 
indole-3-acetic acid, biosynthesis --r528 r724 r842 
inflorescence development, evolution --r853 
internode length --r237 
invertase activity, qtl --r141 
isoleucine, biosynthesis --r816 
IVDNSC, combining ability --r28 
kaempferol, exogenous application --r701 
kairomone --r591 
kernel color, food corn --r264 
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kernel development, nomenclature --r764 
kernel hardness --r4 r143 r493 r707 r747 r992 
kernel row number, qtl --r714 
kernel size, qtl --r675 
kernel weight, qtl --r78 
leaf area --r100 r237 r714 r1005 
leaf development, genetic variability --r288 
leaf number --r237 r714 r735 
leaf thickness --r194 
leaf toughness --r75 r194 
lesion, inheritance --r397 r398 
leucine, biosynthesis --r816 
lignin content --r2B r884 
lignin synthesis --r300 
lime-cooking properties --r747 
lipid content, herbicide response --r969 
lipid content, methods --r1001 
lysine content, evaluation(s) --r315 
male sterile, induction --r634 
maysin content, evaluation(s) --r830 r956 r971 
MBOA, pesVdisease resistance --r352 r730 
methionine, level --r980 
mycorrhizal infection, evaluation(s) --r35 r705 
naphthalic anhydride, interaction --r814 
neutral detergent fiber --r2B r572 
nuclear male sterility, utilization --r13 
oil composition, qtl --r78 r738 
opaque endosperm, evaluation(s) --r315 
osmotic adjustment, inheritance --r766 
osmotic stress response, selection --r219 
p-coumaric acid, pesVdisease resistance --r76 r223 r224 
pericarp browning, pesVdisease resistance --r223 
pericarp transparency --r1 O 
phenolic content, pesVdisease resistance --r223 
photoperiod response --r365 
photosynthesis, inhibition --r220 r465 r843 
photosynthetic efficiency --r100 r182 r220 r278 
phytochelatin, induction --r593 
plant height --r64 r78 r129 r714 r735 r889 
plant height, orthology --r521 
pollen germination --r113 r770 
pollen thermotolerance, qtl --r276 
pollen tube growth, qtl --r770 
pollen viability, methods --r113 r114 
polyamine, variation --r97 
protein content, kernel, qtl --r78 r738 
protein content, whole plant, combining ability --r28 
quercetin, exogenous application --r701 
reducing sugars, 3rd leaf, 4th leaf, qtl --r141 
regeneration capacity, genetic control --r345 
resistant to AEC, inheritance --r43 
resistant to E. turcicum, induction --r725 
response to alachlor, selection --r272 
response to aluminum --r530 r531 r683 r704 
response to Aspergil/us flavus --r117 r132 r317 r632 r880 r956 
response to bentazon, inheritance --r103 
response to Bipolaris maydis --r23 r516 r587 
response to Busseo/a fusca, evaluation(s) --r910 
response to Cercospora zeae-maydis --r165 r734 
response to Chilo partellus --r6 r7 r419 r482 r910 
response to Cicadulina spp. --r410 
response to Clavibacter michiganense --r587 
response to cold stress --r74 r118 r259 r288 r466 r923 r958 r1003 
response to cold stress, methods --r357 r358 -r440 r843 
response to corn earworm --r223 r224 r661 r970 
response to corn earworm, transgenic expression --r299 



response to Diplodia maydis, methods --r587 
response to downy mildew, methods --r587 
response to Etwinia stewartii, methods --r587 
response to European corn borer, 1st --r3 r25 r57 r75 r76 r77 r691 

r970 
response to European corn borer, 1st, transgenic expression --r31 r32 

r162 r299 
response to European corn borer, 2nd --r25 r57 r76 r405 r512 r970 

r971 
response to European corn borer, 2nd, transgenic expression --r31 

r32 r162 r299 
response to Exserohilum turcicum --r137 r138 r512 r560 r725 
response to fall armyworm --r194 r661 r966 r967 r970 
response to flooding --r386 r912 
response to Fusarium kernel rot --r217 r722 
response to Fusarium seedling blight --r208 r718 
response to Fusarium stalk rot, methods --r587 
response to Gibberella stalk rot, methods --r587 
response to glyphosphate, genetic variability --r266 
response to heat stress --r219 r275 r904 
response to high plains virus --r392 
response to imidazolinone, map location --r309 
response to maize dwarf mosaic virus --r52 r277 r385 r468 r469 r478 

r602 
response to maize streak virus --r410 r740 
response to maize weevil --r417 r691 r880 
response to nicosulfuron --r645 r736 r814 
response to nitrogen --r4 r91 r488 r489 r490 r491 r654 r655 r656 
response to phosphorus --r35 
response to Phyllosticta maydis, toxin --r516 
response to Puccinia sorghi --r193 r241 
response to Rhizoctonia solani --r424 
response to sap beetle, phenolics --r223 
response to Sc/erophthora macrospora --r587 
response to southwestern corn borer --r194 r749 r966 r967 r970 
response to Sphacelotheca reiliana, methods --r587 
response to Striga --r449 r717 
response to sugarcane borer, evaluation(s) --r970 
response to sugarcane mosaic virus --r277 r385 r468 r469 r478 
response to Ustilago maydis --r50 r587 r674 
response to virus, transgenic expression --r310 
response to western corn rootworm --r36 r691 r731 r732 r733 r970 
rimsulfuron tolerant --r645 
root development --r49 r425 
root diameter, environmental effects --r342 
root length, stress tolerance --r530 r531 
root lodging --r30 r268 r294 r368 
root number, environmental effects --r342 
salinity tolerance --r267 r601 
seed germination, methods --r130 
seed vigor, methods --r130 
seedling emergence --r124 
semisterility, source/sink ratio --r1009 
single spikelets, description --r215 
single-cross performance, prediction --rB0 r81 
soluble carbohydrate content, whole plant, combining ability --r28 
somatic embryogenesis, genetic control --r345 
sporopollenin, herbicide response --r969 
stalk juice, percent Brix --r459 r460 
stalk lodging --r30r294 r368 
starch composition --r42 r738 r844 
starch content --r78 r116 r992 
starch content, whole plant, combining ability --r28 
starch synthesis, biochemistry --r571 r609 r630 r825 
starch thermal properties --r134 r135 
starch, characterization --r647 

starch, pathway --r609 
starch, properties --r616 
starch, regulation --r86 
starch, composition --r42 
starch, value-added --r844 
sterol synthesis --r318 
stover lipids, evaluation(s) --r1001 
stressed-leaf ABA content --r172 
sucrose phosphate synthase activity --r141 r142 
sucrose synthase activity, qtl --r141 
sucrose, 3rd leaf, 4th leaf, qtl --r141 
susceptible to bentazon, inheritance --r103 
tassel branch number, qtl --r714 
terbufos, interaction --r814 
thiol peptide, induction --r593 
threonine-overproducing, biochemistry --r612 
truxillic acid, truxinic acid, pest/disease resistance --r76 
tryptophan content --r247 r248 r315 
tryptophan synthesis --r724 
valine, biosynthesis --r816 
vertical root pulling strength --r731 r733 
wax synthesis, herbicide response --r969 
wax(es), pest/disease resistance --r317 
waxy endosperm --r4 
wet milling characteristics, evaluation(s) --r992 
wet milling starch yield, evaluation(s) --r992 
zinc content --r421 
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Ds-1 0L2 139 r633 
Ds-10L4 139 r633 
Ds1 54 
Ds2 54 
Ds9 54 
dsy1 r559 
du1 r630 r647 r844 
dupssr1 110 114 
dupssr2 110 117 
dupssr3 110 115 
dupssr4 110 117 
dupssr5 110 117 
dupssr6 110 116 
dupssr7 110 117 
dupssrB 110 117 
dupssr9 111115 
dupssr10 111114 
dupssr11 111 115 
dupssr12 111112 
dupssr13 111115 
dupssr14 111116 
dupssr15 111115 
dupssr16 111117 
dupssr17 111117 
dupssr18 111117 
dupssr19 111116 
dupssr20 111 117 
dupssr21 111113 
dupssr22 111 117 
dupssr23 111 113 
dupssr24 111 113 
dupssr25 111 113 

dupssr26 111 117 
dupssr27 111117 
dupssr28 111 113 
dupssr29 111 116 
dupssr30 111117 
dupssr31 111 117 
dupssr32 111 117 
dupssr33 111 117 
dupssr34 111113 
dzr1 48 137 r155 
dzs23 138 r855 
Dzs23-Mo17 r855 
e4 r443 
ea 51 136 r443 r907 
e91 44 
emb*-8532 r581 
emp2 52 
En 1 r688 r689 
En2 r688 
eno1 r22 
enp1 r726 
et1 r776 
et1-M1 r776 
et1-M2 r776 
et1-M3 r776 
et1-M4 r776 
et1-M5 r776 
et1-M6 r776 
et1-M7 r776 
et1-M8 r776 
et1-M9 r776 
et1-m9 r776 
et1-M10 r776 
et2 21 
11 r295 
ldx1 50 114 138 
ler1 139 r265 
ler2 139 r265 
1h11 136 r199 
Fht1-T1994 r199 
112 r535 r647 
9*-1-7(x55-16) 65 
9*-56-3005-24 65 
9*-56-3040-14 65 
9*-59-2097 65 
9*-68-609-13 65 
9*-94-1478 65 
91 65 
91-1-7(X-55-16) 65 
91-56-3004-24 65 
91-56-3005-24 65 
91-68-609-13 65 
g1-g4 65 
92 65 r841 
92-56-3034-14 65 
92-56-3040-14 65 
92-59-2097 65 
92-94-1478 65 
92-p914::I r689 
g4 65 
9a1 43 
ga2 44 
9a7 43 
9a8 44 
9bl1 139 r197 
9bp*-D31905 139 

r415 r416 
9bp*-D31906 139 

r415 r416 
gdcp1 15139 
9dh*-D49475 139 

r761 
9dh1 51 
geb1 139 r981 
gl1 138 r781 
gl1-5084::Mu1 r781 
911-N269 r781 
911-N271 r781 
gl1-N345B r781 
911-N489B r781 
gl2 43 136 r781 
912-N239 r781 
gl2-N718 r781 
gl3-N531 r781 
gl4 137 r907 
gl4-N525A r781 
gl5 r781 
gl6-N672B r781 
glB 137 r781 r907 
918-3142::MuB r781 
918-N166A r781 
gl11 43 
gl14 136 r781 
gl15 34 44 r499 
9117 44 
9117-N260B r781 
gl19 43 
gl20 r781 
gl21 139 r781 r907 
9122 r781 
gl25 137 r781 
gl25-903134-AD5 

r781 
gl26 139 r781 
9126-892543-44 r781 
glb1 50112136 
gln2 r850 
gln3 r850 
gln4 50 114 137 r850 
gln5 r850 
Gln6-A 188 r850 
glu1 50 51 139 r714 

r726 
glu2 r120 
gn1 43 
9ot1 136 r714 r726 
9012 137 r726 r907 
got3 r726 
gpa 1 138 r222 
9pc1 50113137 
grf1 139r196 
grf2 r196 
gs1 r295 
gst1 50116138 r751 
gst1-B37 r751 
gst2 139 r367 r394 
gst4 50 113137 
gstllA 139 r751 
gstllB 138 r751 
gzr1 138 r1 90 r536 

r537 
hcl2 r74 

hcl3 r480 
hcf19 r480 
hcl103 r480 
hcl 103-114 r480 
hcl106 r929 
hex2 138 r714 
hm1 71 136 r397 r589 

r838 
hm2 71 139 r589 
hmg1 139 r308 
hm9a 23 
hmp1 14136 
Hopscotch 139 r954 
hox1 44 r111 r805 
hox2 44 138 r436 

r454 r805 
hox3 137 r436 r454 
hox4 138 r454 
hr91 r887 
hs1 44 
hsf1 44 
hsk1 139 r973 
hsp90* 50 116 139 
hsz1 139 r163 
ht1 136 r589 
ht2 138 r589 
ht4 136 r137 
htn1 138 r589 
ias3 137 r781 
ias6 136 r781 
id1 43 
idh1 r436 r726 
idh2 r726 
i91 43 
IGS r58 
ij1 44 
ij2 43 
incw1 137 r798 
lncw1-BMS r798 
inlA(cp) 140 r561 
lnverted-Repeatl( cp) 

140 r561 
lnverted-Repeatll( cp 

140 r561 
isu1 52 
isu5 52 
isu6 52 
isu7 52 
isu10 137 
isu18 52 
isu61 50 136 
isu7 4 136 r684 
isu77 50 137 
isu88 139 r513 r684 
isu98a 50 139 
isu110 139 r513 r684 
isu116 136 r513 r684 
isu124 50 139 
isu136 139 
isu136b 50 139 r513 

r684 
isu152 136 r513 r684 
isu174 r513 
ivr1 139 r983 
jc1270 138 r813 
K r58 
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kn1 2 20 43 136 r436 
r590 r805 r827 

Kn1-N2 2 
kn1-O r436 
kn2 44 
knox1 · 43 136 r436 
knox2 44 139 r436 
knox3 43 136 r436 
knox4 43 136 r436 
knox5 44 138 r436 
knox6 44 137 r436 
knox7 43 137 r436 
knox8 43 136 r436 
knox10 44 137 r436 
knox11 44 138 r436 
koln2b(hox) 139 r454 
110 138 r121 
112 138 r121 
115 138 r121 
L20operon(cp) 140 

r561 
L23-lloperon(cp) 140 

r561 
L23-loperon(cp) 140 

r561 
L33operon(cp) 140 

r561 
la1 43137 r215 
les*-35587 r398 
les*-28O r398 
les*-911 r398 
les*-1369 r398 
les*-1790 r398 
les*-A467 r398 
les*-D101 139 r398 
les*-EC91 r398 
les*-J2552 r398 
les*-MA102 r398 
les*-MO141 r398 
les*-N2013 r398 
les*-N2014 r398 
les1 43 r398 
les2 43 r398 
les3 r398 
les4 43 r398 
less 43 r398 
les6 44 r398 
les7 r398 
Iese 44 r398 
les9 44 r398 
les1 O 43 r398 
les11 r398 
les12 r398 
les13 44 r398 
les14 r398 
les15 43 r398 
les16 44 r398 
les17 r398 
les18 43 
les19 43 
les20 43 
lfy1 68 
Lg-1 16 
Lg-2 16 
lg2 43 
lg3 43 137 r436 r769 
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lg4 44 
lhcb2 r99 
li1 44 
LINE 59 139 
lls1 43 r398 
ln1 138 r17 
lo2 44 
lxm1 43 
mac1 44 
MADS-box r606 
MARZadh1 r41 
mat-r(mt) 133 
mat-r(mtNA) 140 r878 
MC 43 
MCA 43 44 
mct1 r636 
mdh1 r436 r726 
mdh2 51 138 r714 

r726 
mdh3 r726 
mdh4 r726 
mdh5 r726 
mdm1 138 r589 r602 

r813 
me1 137 r714 
me3 r887 
Mesi 55 
mgs1 4450116139 
mgs2 43 
mhl1 14139 
mini-1 16139 
mmm1 r726 
mn1 r590 r630 
Mpi1 r359 
mpl1 43 
ms*-Ll89 30 137 
ms1 30 44138 r121 
ms2 30 44 139 r907 
ms3 30 43 
ms4 3031 
ms5 30 44 137 r907 
ms6 30 
ms7 30 44 
ms8 30 44 
ms9 3043 
ms10 30 44 
ms11 3044 
ms12 30 
ms13 30 44 137 r907 
ms14 30 43 
ms15 30 
ms16 30 
ms17 30 43 
ms18 30 
ms19 30 
ms20 30 
ms21 30 
ms22 30 
ms23 30 43 
ms24 30 
ms25 30 139 r541 
ms26 30 139 r541 
ms27 30139 
ms28 31 43 
ms29 31 
ms40 31 

ms41 30 31 43 
ms42 31 44 
ms43 31 44 
ms44 30 31 43 
ms45 139 r13 
ms45-m1 ::Ac 31 
msv1 136 r589 
mtl*-X85184 139 r160 
mtl1 50113137 
mtl2 139 r950 
Mtl2-U10696 r950 
mtr1 r414 
Mu 4 
Mu1 r642 
Mu8 20 r973 
MuDR 62 139 r68 

r347 r522 r523 
MuDR-1 r522 r523 
MuDR-1 (p1) r522 
mv1 137 r589 
na1 43 
na2 44 
nac1 50116139 r803 
nad1 (mt) 133 
nad1-D(mtNB) 140 

r878 
nad2(mt) 133 
nad3(mt) 133 
nad4(mt) 133 
nad5(mt) 133 
nad6(mt) 133 
nad7(mt) 133 
nad9(mt) 133 
nc003 50 51136 
nc004 51 137 
nc005 51 137 
nc007(ohp2) 51 137 
nc009 51 138 
nc010 51138 
nc012(pdk) 51138 
ncr(b 70a) 50 51 137 
ncr(b70b) 50 51 137 
ncr(nrA) 51 
ndhA(cp) 140 r561 
ndhB-l(cp) 140 r561 
ndhB-ll(cp) 140 r561 
ndhC(cp) 140 r561 

r611 
ndhCndhKndhloperon( 

cp) 140 r561 
ndhD(cp) 140 r561 

r611 
ndhE(cp) 140 r561 
ndhF(cp) 140 r561 
ndhH(cp) 140 r561 
ndhl(cp) 140 r561 
ndhK(cp) 140 r561 
nec1 44 
nec2 43 
nec3 44 
nec4 43 
nec5 43 
nec6 44 
nec7 44 
nk1 63 
nk1 (ck) 62 137 

nl*-1517 15137 
nl1 44 
nl2 44 
NOR 138 
nor r813 
npi47a r738 
npi101 138 
npi101c r813 
npi107 50 51 138 
npi114b 137 r769 
npi122 24 
npi209a 50 52 139 
npi212b 52 
npi213 137 r511 
npi219 137 r769 
npi232a 52 
npi234 50 52 136 
npi235 138 
npi235a 50 52 138 

r813 
npi236 50 52 136 

r513 r684 
npi237 r738 
npi245 25 138 r813 
npi245b 139 
npi253a 51 r738 
npi254a 50 51 136 

r714 
npi254b 50 51 
npi262 r738 
npi268 52 136 
npi268a(ldl) r738 
npi269a r738 
npi271a 136 r714 
npi275 51 
npi276a 25 
npi280 52 138 r513 

r684 
npi282a r714 
npi285(cac) 15 16 50 

51139 
npi286 50 51 136 
npi287b 52 
npi290b 20 136 
npi291 24 
npi292 52 
npi297 24 
npi298 24 
npi303 50 52 139 
npi327a r738 
npi333 r436 
npi371c 15139 
npi373 25 
npi404c 139 r714 
npi409 r738 
npi410 52 r738 
npi419b r714 
npi420 25 
npi422 16 139 
npi427a r738 
npi429 52 
npi434 51 
npi443 r738 
npi447 r738 
npi449a 51 r738 
npi449b 51 

npi455b r738 
npi456 24 
npi560 25 
npi565a 52 
nrz5 51 
ns1 43 
ns2 43 
02 36 41 48 50 59 64 

115 138 r248 r353 
r493 r535 r536 
r537 r594 r610 
r618 r631 r633 
r811 r998 

02-261 ::rbg r337 
O2-A69Y r337 
o2-AGROCERES 

r337 
02-873 r337 
o2-Columbian::rbg 

r337 
o2-Crow r337 
o2-G r337 
o2-lt 41 
o2-m(r) r337 r467 
o2-m5::Ac r594 
o2-m7::Spm r594 
o2-m8::Spm r594 
o2-m9::Spm r594 
o2-m10::Spm r594 
o2-m11 ::Spm r594 
o2-m12::Spm r594 
o2-m13::Bg r594 
o2-m14::Bg r594 
o2-m55::Ac r594 
o2-mh::rbg r337 
o2-R 41 r337 
o2-T 41 
O2-wl r337 
o2-Zhu1995 r337 
o5 138 
015 138 r190 
obf1 43 
obf2 44 
obf3a 43 
obf38 44 
obf6 43 
oec17* 138 
oec17*-226824 50 

115138 
ohp2 50 114 137 
olc1 136 r979 
olc1-ref r979 
ole1 136 r510 r511 
ole2 50 114 137 r510 

r511 
Ole2-B73 r511 
ole2-CM555 r510 
ole3 137 r510 r511 
ole3-FR2 r510 
OPAC-02(680)(mt) 12 

140 
OPAC-02(1053)(mt) 

12140 
OPAN-05(370)(mt) 12 

140 
OPAN-05(680)(mt) 12 

140 
OPE08-1.2kb 69 136 
OPG-19(290)(mt) 12 

140 
OPN20-675 24 25 

137 
OPT-09(800)(mt) 12 

140 
OPT-12(1230)(mt) 12 

140 
ORF23(cp) 140 
ORF29(cp) 140 r561 
ORF31 petEORF42(cp 

) 140 r561 
ORF34(cp) 140 r561 
ORF38(cp) 140 r561 
ORF40(cp) 140 r561 
ORF42(cp) 140 r561 
ORF46(cp) 140 r561 
ORF49(cp) 140 r561 
ORF58(cp) 140 r561 
ORF62(cp) 140 r561 
ORF63(cp) 140 r561 
ORF69(cp) 140 r561 
ORF75(cp) 140 r561 
ORF99(cp) 140 r561 
ORF123(cp) 140 r561 
ORF133(cp) 140 r561 
ORF137(cp) 140 r561 
ORF139(cp) 140 r561 
ORF159(cp) 140 r561 
ORF170(cp) 140 r561 

r611 
ORF173(cp) 140 r561 
ORF185(cp) 140 r561 
orf221 (mt) r739 
orf240(mt) 133 
ORF241(cp) 140 r561 
ORF321(cp) 140 r561 
orp1 43 
orp2 44 
oy1 16139 
P 139 r95 r938 
p1 18 50 52 57 112 

136 r549 r760 
P1-pr 8 48 r549 
p1-RP 4 
P1-rr 4 7 8 48 r549 

r971 
P1-vv::Ac r689 
P1-wr 7 
p1-ww 48 
pcna1 139 r539 
Pcna1-BMS1995 r539 
pd1 r215 
pdc1 r22 
pdk1 50 115 138 r579 

r803 
pds*-L39266 136 

r327 
pep1 50116139 
pet1 r54 
pet2 r54 
petA(cp) 140 r561 
petB(cp) 140 r561 

r611 



pe!D(cp) 140 r561 
petG(cp) 140 r561 

r611 
petl(cp) 140 r561 
pex1 139 r753 
pg15 136 r907 
pgd1 138 r714 
pgd2 137 r907 
pgm1 r726 
pgm2 50 51 137 r714 

r726 
ph1 43 
phi1 136 r436 r492 

r726 
phi001 51 136 
phi002 50 51136 
phi006 51 137 
phi008 137 
phi008(rab15) 51 
phi014 51 138 
phi015 51 138 
phi016 51 139 
phi017 51 139 
phi029 136 137 
phi032 139 
phi034(cyp) 51138 
phi035 50 51 139 
phi036 50 51 137 
phi039 50 136 
phi041 50 51 139 
phi043 50 51 138 
phi044 51139 
phi048 50 51137 
phi050 50 139 
phi051 50 51138 
phi053 50 51 137 
phi054 50 51 139 
phi055 51 136 
phi056 51 136 
phi057 51 138 
phi059 50 51116139 
phi060 51 138 
phi061 51139 
phi062 51 139 
phi063 50 51116139 
phi064 50 51112136 
phi065 51 139 
phi069 50 51138 
phi070(tpk1) 51 138 
phi071 (hsp90) 51 139 
phi072 137 
phi073 137 
phi074 137 
phi075 138 
phi076 137 
phi077 50 51 114 138 
phi082 50 138 
phi083 136 
phi084 139 
phi085 137 
phi085(gln4) 51 
phi087 50 137 
phi093 51 137 
phi095 136 
phi096(zp19/22) 51 

137 

phi098 50 51 136 
phi101 50 51137 
phi102 50 51136 
phi106 50 138 
phi107 50 137 
phi108 50 139 
phi113 53 137 
phi114 53 138 
phi115 53 138 
phi117 50 51 139 
phi119 50 51138 
phi121 50 51138 
phi122 50 139 
phi123 50 138 
phi124 50 138 
phi125 50 51 138 
phi126 50 51 138 
phi127 50 136 
phi128 50 137 
phi129 5051138 
phi10012 136 
php06012 r738 
php10005 139 r513 

r684 
php10012 50 52 r738 
php10014 53 
php10016 25138 r513 

r684 
php10017 50 51 53 

137 
php10025 52 r738 
php10040 50 53 138 
php10080 25 
php15018 53 
php15037 50 53 138 
php20020 53 
php20042b 53 
php20071 50 137 
php20075 137 
php20508 137 r769 
php20509 137 r769 
php20566 53 
php20568b 136 r199 
php20576 137 r769 
php20581 a(ext) 50 51 

138 
php20581 b(ext) 51 

136 r860 
php20589 53 
php20608 30 51 
php20644 51 
php20690a 53 
php20725 49 
php20725a(gast) 51 

137 r155 r215 
php20746 50 53 138 
php20802 137 r769 
php20854 25 
php20872 50 53 137 
phy1 42 
phyA1 43 
phyA2 44 r436 
phyB1 43 
phyB2 44 
pic7A 1516 
pic7B 1516 

pic7C 16 
pki1 r737 r982 
pl 1 44 50 52 62 114 

115 138 r95 r366 
r677 r760 r896 
r907 

pl1-Bh 4 
Pl1-Bh 17 
Pl1-Rhoades 17 r366 

r938 
pl1-W23 r366 
pld1 139 r899 
Pld1-Mo17 r899 
pm1 43 
pmg1 139 r303 
pn1 44 
po1 30314413Br813 
ppi1 139 r564 
prp1 r718 r719 
prp2 50 136 
prp3 113 
ps1 44 r291 r581 
ps1-vp7 r66 
psaA(cp) 140 r561 
psaB(cp) 140 r561 
psaC(cp) 140 r561 
psaCndhDoperon(cp) 

140 r561 
psal(cp) 140 r561 
psbA(cp) 140 r561 
psbB(cp) 140 r561 
psbBpsbFpetBpetDop 

eron(cp) 140 r561 
psbC(cp) 140 r561 
psbD(cp) 140 r561 
psbDpsbCoperon(cp) 

140 r561 
psbE(cp) 140 r561 
psbEpsbFpsbLORF40 

operon(cp) 140 
r561 

psbF(cp) 140 r561 
psbH(cp) 140 r561 
psbJ(cp) 140 r561 
psbK(cp) 140 r561 
psbl(cp) 140 r561 
psbM(cp) 140 r561 
psbN(cp) 140 r561 
psbR(cp) 140 r561 
psbT(cp) 140 r561 
psei2 139 r1 
psl1 136 r125 
psl3 139 r125 
psl4 137 r125 r888 
psl5 137 r125 r888 
psl6 136 r125 
psi? 137 r125 
psl8 137 r125 r888 
psl9 139 r125 
psl10 137 r125 r888 
psl11 136 r125 r888 
psl13 136 r125 
psl15 138 r125 
psl16 137 r125 r888 
psl18 136 r125 r888 
psl19 138 r125 r888 

psl20 137 r125 
psl21 137 r125 r888 
psl22 139 r125 r888 
psl23 138 r125 r888 
psl24 136 r125 
psl25 136 r125 r88B 
psl26 137 r125 
psl27 138 r125 
psl28 137 r125 r888 
psl29 138 r125 r888 
psl31 136 r125 
psl32 136 r125 r888 
psl33 136 r125 r88B 
psl35 137 r125 r888 
psl38 138 r1'25 
psl39 137 r125 r888 
psl42 138 r125 
psl43 137 r125 
psl44 136 r125 
psl45 137 r125 
psl46 139 r125 
psl4 7 137 r125 r888 
psI48 139 r125 
psl75 137 r125 
pt1 44 r20 
ptd1 43 
ptd2 44 
px1 r444 
px2 r444 
px3 r444 
px4 r444 
px5 r444 
px6 r444 
px7 r444 
px8 r444 
px9 r444 
px1 O 139 r444 
px12 139 r443 r444 
py1 44 
py2 43 
pZmlSU167 50 51139 
q 139 r93B 
q3lfdm1 r141 
q3lfdm2 r141 
q3lfdm3 r141 
q3Ifdm4 r141 
q3lfdm5 r141 
q3lfdm6 r141 
q3lfht1 r141 
q3lfht2 r141 
q3lfht3 r141 
q3lflen 1 r141 
q3lflen2 r141 
q3lflen3 r141 
q3lflen4 r141 
q3lflen5 r141 
q3lflen6 r141 
q3lfred1 r141 
q31fred2 r141 
q3lfred3 r141 
q3lfsuc1 r141 
q3lfsuc2 r141 
q3lfsuc3 r141 
q3Ifsuc4 r141 
q3lfwid1 r141 
q3lfwid2 r141 

q3Ifwid3 r141 
q3I1wid4 r141 
q4lfred 1 r141 
q4Ifred2 r141 
q41fred3 r141 
q41fred4 r141 
q4I1suc1 r141 
q4lfsuc2 r141 
q4Ifsuc3 r141 
qagp1 r141 
qagp2 r141 
qagp3 r141 
qanth1 r63 
qanth2 r63 
qanth3 r63 
qanth4 r63 
qanth5 r63 
qanth6 r63 
qanth7 r63 
qanlh8 r63 
qanlh9 r63 
qanth10 r63 
qd3I11 r141 
qd3lf2 r141 
qd3lf3 r141 
qd3l14 r141 
qgrdm1 r8 
qgrdm2 r8 
qgrdm4 r8 
qgyld9 r8 
qgyld10 r8 
qgyld11 r8 
qgyld12 r8 
qgyld13 r8 
qinv1 r141 
qinv2 r141 
qinv3 r141 
qfnv4 r141 
qsps1 r141 
qsps2 r141 
qsps3 r141 
qsps4 r141 
qsps5 r141 
qsus1 r141 
qsus2 r141 
qsus3 r141 
qsus4 r141 
qsus5 r141 
qtest8 r8 
qtest9 r8 
qtest10 r8 
qtest11 r8 
qtest12 r8 
qlest13 r8 
qtest14 r8 
qtest15 r8 
r1 4 139 r95 r596 

r633 r677 r760 
r886 r896 r938 

r1-ch:Hopi 62 
r1-g 4 
Rl-g r938 
R1-G1 r596 
R1-G3 r596 
R1-G4 r596 
R1-G5 r596 

R1-lst r596 
R1-nj r95 
r1-r 4 
R1-r r938 
R1-st 21 r596 
r4.5-l(cp) 140 r561 
r4.5-ll(cp) 140 r561 
r5-l(cp) 140 r561 
r5-ll(cp) 140 r561 
r16-l(cp) 140 r561 
r16-ll(cp) 140 r561 
r16-r23spacerl(cp) 

140 r561 
r16-r23spacerll(cp) 

140 r561 
r23-l(cp) 140 r561 
r23-ll(cp) 140 r561 
ra1 44 
ra1-D 68 
ra2 43 r841 
rab15 50114137 r11 
rab30 43 
RAPDE08-1.2kb 69 
rbcl( cp) 140 r509 

r561 
Rcm1 r857 
rd1 43 68 
rd2 68 
rd3 43 68 
rea1 43 
ren1 50 52 137 
ren2 52 
Rf*-nf 65 
rt•-nt79-21-27 65 138 
rt•-nf79-23-27 65 138 
rt•-nf81-67-9 65 137 
Rf*-VI 66 
Rf1 r298 
rf3 136 
Rl3 24 69 
rf3 24 69 
Rf3-CE1 24 
Rl3-Ky21 24 
rf4 138 r907 
RIIV 24 
rg1 43 137 r769 
rgd1 44 
rgo•-vI 66 
rgo1 66 
rhm 1 138 r1 49 r589 

r813 
rhm2 138 r149 
ri1 43 
ripl 50115138 
rip2 138 r60 
Rip2-L26305 r60 
rlc1 44 139 r508 
~d1 1444139 
Rld1-1441 14 
Rld1-1608 14 
Rld1-1990 14 
Rld1-MF 14 
Rld1-N1441 14 
Rld1-N1990 14 
Rld1-O 14 
Rld1-PB 14 
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rp1 15 139 r589 r731 
r907 

Rp1-A r731 
Rp1-A(GK) r731 
Rp1-B r731 
Rp1-B12 r731 
Rp1-C r731 
Rp1-D r731 
Rp1-D1 r731 
Rp1-D2 r731 
Rp1-D3 r731 
Rp1-D4 r731 
Rp1-D5 r731 
Rp1-D6 r731 
Rp1-D7 r731 
Rp1-D8 r731 
Rp1-D9 r731 
Rp1-D10 r731 
Rp1-D11 r731 
Rp1-D12 r731 
Rp1-D13 16 r731 
Rp1-D14 r731 
Rp1-D15 r731 
Rp1-D16 r731 
Rp1-D17 r731 
Rp1-D18 r731 
Rp1-D19 r731 
Rp1-D20 r731 
Rp1-D21 r731 
Rp1-D22 r731 
Rp1-D23 r731 
Rp1-D24 r731 
Rp1-D25 r731 
Rp1-D26 r731 
Rp1-D27 r731 
Rp1-D28 r731 
Rp1-D29 r731 
Rp1-DAC r731 
Rp1-D11 r731 
Rp1-Dl28 r731 
Rp1-DJ46 r731 
Rp1-DRp53a r731 
Rp1-DRp54a r731 
Rp1-E r731 
Rp1-EF25 r731 
Rp1-F r731 
Rp1-FMutator r731 
Rp1-I r731 
Rp1-IG5a r731 
Rp1-IG7c r731 
Rp1-IG7d r731 
Rp1-IG8a r731 
Rp1-IG10b r731 
Rp1-lr2 r731 
Rp1-J r731 
Rp1-JF11 r731 
Rp1-JF58 r731 
Rp 1-JF69 r731 
Rp1-K r731 
Rp 1-Kr1 r731 
Rp 1-Kr1 J6 r731 
Rp1-Kr1J15 r731 
Rp 1-Kr1 J92 r731 
Rp1-Kr2 r731 
Rp1-Kr3 r731 
Rp1-Kr4 r731 
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Rp1-Kr5 r731 
Rp1-L r731 
Rp1-N r731 
rp1-NC r398 
rp3 137 r589 r769 

r907 
Rp3-a r769 
Rp3-b r769 
Rp3-c r769 
Rp3-d r769 
Rp3-e r769 
Rp3-f r769 
rp4 137 r589 
Rp5 r731 
rp5 r589 
rpl2(mt) 133 
rpl2-l(cp) 140 r561 
rpl2-ll(cp) 141 r561 
rpl3 139 r67 
rpl5(ml) 133 
;pl14(cp) 140 r561 
rpl16 139 r67 
rpl16(cp) 140 r561 
rpl16(mt) 133 
rpl16exon1(cp) 140 

r561 
rpl16exon2(cp) 140 

r561 
rpl16intron(cp) 140 

r561 
rpl20(cp) 141 r561 
rpl22(cp) 141 r561 
rpl23-l(cp) 141 r561 
rpl23-ll(cp) 141 r561 
rpl23pseudogene( cp) 

141 r561 
rpl32(cp) 141 r561 
rpl33(cp) 141 r561 

r611 
rpl36(cp) 141 r561 
rpoA(cp) 141 r561 
rpoB( cp) 141 r561 
rpoBCoperon(cp) 141 

r561 
rpoC1(cp) 141 r561 
rpoC2(cp) 141 r561 
rpp9 r589 
;ps1(ml) 133 
rps2(cp) 141 r561 r611 
rps3(cp) 141 r561 
rps3(mt) 133 
rps4 r67 
rps4(cp) 141 r561 
rps6 140 r67 
rps7-l(cp) 141 r561 
rps7-ll(cp) 141 r561 
rps8(cp) 141 r561 
rps10(mt) 133 
rps11(cp) 141 r561 
rps12(cp) 141 r561 
rps12(mt) 133 
rps12-exon1 (cp) 141 

r561 
rps12-l(cp) 141 r561 
rps12-lexon2(cp) 141 

r561 

rps12-lexon3(cp) 141 
r561 

rps12-ll(cp) 141 r561 
rps12-llexon2(cp) 141 

r561 
rps12-llexon3(cp) 141 

r561 
rps13(mt) 133 
rps14(cp) 141 r561 

r611 
rps15-l(cp) 141 r561 

r611 
rps15-ll(cp) 141 r561 
rps16(cp) 141 r561 

r611 
rps18(cp) 141 r561 
rps19(mt) 133 
rps19-l(cp) 141 r561 

r946 
rps19-ll(cp) 141 r561 

r946 
rrn5(5SrRNA)(mt) 133 
rrn18(18SrRNA)(mt) 

133 
rrn26(26SrRNA)(mt) 

133 
rs1 15 44 138 r436 

r782 
Rs1-B73 r782 
Rs1-O r782 
Rs1-Or90 r782 
Rs1-Or122 r782 
Rs1-Or312 r782 
rs2 43 
rs4 44 
rt1 43 
rtcs 23 
rtcs1 23 140 
rth3 43 
rUq 54 
ruq r795 
rz329 49 137 r155 
rz536 49 r155 
S 139 r95 r938 
S1 139 r938 
S2 139 r938 
S2operon(cp) 141 

r561 
S12-lloperon(cp) 141 

r561 
S12-loperon(cp) 141 

r561 
S14operon(cp) 141 

r561 
sdw1 44 
se1 25 136 r52 r860 
sed1 140 r824 
sed2 140 r824 
see1 140 r824 
see2 140 r824 
see3 140 r824 
see4 140 r824 
sem1 14139 
sh1 14 18 36 40 50 

116 139 r630 r647 
r738 r849 

sh1-m5933 54 T9-10b(10) r508 
sh2 25 52 r598 r630 tan1 44 

r671 r738 r825 tb•-8963 65 
r977 TB-1Sb(1) 14136 

sh2-m1 54 TB-1Sb-2L4464 136 
sh2-m1::Ds r292 TB-2Sb(2) 136 r781 
sh2-N2340 18 TB-3Sb(3) 15 137 
sh2intron1 .8kb 59 r841 
sh4 137 r907 TB-5Sc(5) 137 r781 
si1 44138 r121 TB-6Sa(6) 138 r813 
sigma 139 r938 TB-9La 28 
sk1 43 TB-9Sb 28 
s11 44 TB-9Sd(9) 14139 
Sleepy 140 r973 tb1 3 43 136 r214 
sm1 4 7 tb1-8963 65 
sn 1 r886 lb 1-ref 3 65 
Sn1-bol3 r886 Tb1-Zpa r214 
Sn1-coop r886 tbp1 43 
snr14 140 r501 tbp2 44 r436 
Snr14-KGlory1994 td1 44 

r501 te1 43 137 r214 
sos1 43137 r215 Te1-Zpa 137 r214 
Sos1-ref r215 tga1 43 
Spm 8 9 140 r659 tha1 r54 r929 

r688 tha2 r54 
ssu1 50113137 tha3 140 r54 
s11 43 thp•·D45402 140 r221 
su1 4 25 30 34 137 thp•·D45403 140 r221 

r215 r389 r630 thp*-Mp708 140 r396 
r825 thp*-X82185 140 r160 

su1-R2412 4 tlk1 50 115 138 r951 
su1-R4582::Mu1 5 11s1 43 
su1-Ref 4 tmz1 43 
su2 r135 r630 r647 tmz1-1 43 
sus1 50 116 139 r801 tmz1-2 43 
T1-2(4464)(2) r781 tmz1-4 44 
T1-3(5242)(1) 3 136 tmz1-5 44 
T1-3(5267)(1) 3 136 tmz1-6 44 
T1-9(5622)(1L.10) 136 tmz1-7 44 
T1-9c(1S.48) 136 tmz1-9 44 
T2-9b 136 Tp(1-3) 3 
T2-9b(2) r781 tp1 34 44 r499 
T3-9(8447) 65 137 Tp2 
T3-9(8447)(3) 65 tp2 34 44 r499 
T3-9c 65 137 tp3 43 r499 
T3-9c(3) 65 Tp9;Del3 r931 
T 4-6(055-8)(6) 138 tpi2 136 r714 
T4-6(6623)(6) 138 tpi4 50 113 136 137 

r121 r714 
T 4-6(8428)(6) 138 tpi5 51 

r121 trf 43 
T4-9(5657)(4) 30 trm1 140 r890 
T6-9(043-1)(6) 138 Trm1-B73 r890 

r121 trn1 44 
T6-9(4505) 65 138 trnA(UGC)-l(cp) 141 
T6-9(4505)(6) 65 r561 
T6-9(4778) 65 138 trnA(UGC)·ll(cp) 141 
T6-9(4778)(6) 65 r561 
T6-9(6019)(6) 138 trnaC(ct)(GCA)(mt) 

r121 133 
T6-9e(6) 138 r121 trnaD(GUC)(mt) 133 
T6-10e(6) r121 trnaE(UUC)(mt) 133 
T8-9(043-6) 65 138 trnaF(ct)(GAA)(mt) 
T8-9(043-6)(8) 65 133 
T8-9d 65 138 trnafM(CAU)(mt) 133 
T8-9d(8) 65 trnaH(ct)(GUG)(mt) 

133 
trnaK(UUU)(mt) 133 
trnaM1 (CAU)(mt) 133 
trnaM2(ct)(CAU)(mt) 

133 
trnaN(ct)(GUU)(mt) 

133 
trnaP(UGC)(mt) 133 
trnaQ(UUG)(mt) 133 
trnaS(GCU)(mt) 133 
trnaS(UGA)(mt) 133 
trnaW(ct)(CCA)(mt) 

133 
trnaY(GUA)(mt) 133 
trnC(GCA)(cp) 141 

r561 
trnD(cp) 141 r561 
trnE(cp) 141 r561 
trnF(GAA)(cp) 141 

r561 
trnfM(CAU)(cp) 141 

r561 
trnfMpseudogene(cp) 

141 r561 
trnG(GCC)(cp) 141 

r561 
trnG(GCC)pseudogen 

e(cp) 141 r561 
trnG(UCC)(cp) 141 

r561 
trnG(UCC)pseudogen 

e(cp) 141 r561 
trnH(GUG)-l(cp) 141 

r561 
trnH(GUG)-ll(cp) 141 

r561 
trnl(CAU)-l(cp) 141 

r561 
trnl(CAU)-ll(cp) 141 

r561 
trnl(GAU)-l(cp) 141 

r561 
trnl(GAU)-ll(cp) 141 

r561 
trnK(cp) 141 r561 
trnl(CAA)-l(cp) 141 

r561 
trnl(CAA)-ll(cp) 141 

r561 
trnl(UAA)(cp) 141 

r561 
trnM(CAU)(cp) 141 

r561 
trnN(GUU)-l(cp) 141 

r561 r611 
trnN(GUU)-ll(cp) 141 

r561 
trnP(UGG)(cp) 141 

r561 
trnQ(cp) 141 r561 
trnR(ACG)-l(cp) 141 

r561 
trnR(ACG)-ll(cp) 141 

r561 
trnR(UCU)(cp) 141 

r561 



trnS(GCU)(cp) 141 
r561 

trnS(GGA)(cp) 141 
r561 

trnS(UGA)(cp) 141 
r561 

trnT(cp) 141 r561 
trnT(UGU)(cp) 141 

r561 
trnV(GAC)-l(cp) 141 

r561 
trnV(GAC)-ll(cp) 141 

r561 
trnV(GAC)-r16s pacer 

141 r561 
trnV(UAC)(cp) 141 

r561 
trnW(CCA)(cp) 141 

r561 
trnY(cp) 141 r561 
trp1 140 r472 
Trp1-X76713 r472 
tru1 137 r214 
ts1 43 
1s2 43 50 112 136 

r451 r452 
!s3 43 
ts4 43 
ts5 43 
ts6 43 
tu1 43 
tua1 r887 
tub1 50112136 
tubg1 140 r538 
uaz44a(zp19) 137 

r803 
uaz44b(zp19) 137 

r803 
uaz80(iron) 138 r803 
uaz91 (ndk) 138 r803 
uaz93a(tpi) 138 r803 
uaz99(fab1) 139 r803 
uaz100(prl) 139 r803 
uaz104 r436 
uaz119a(rpS6) 138 

r803 
uaz119b(rpS6) 138 

r803 
uaz119c(rpS6) 139 

r803 
uaz124a(rpl7) 136 

r803 
uaz124b(rpl7) 139 

r803 
uaz127a(pdk) 138 
uaz127b(pdk) 138 

r803 
uaz130b(tlk) 137 r803 
uaz130c(tlk) 137 r803 
uaz131 r803 
uaz132a(dts) 137 

r803 
uaz144 139 
uaz145(ahh) 137 r803 
uaz149(zp19) 137 

r803 

uaz151(sar) 136 r803 
uaz152(sdh) 139 r803 
uaz157(rpl 19) 137 

r803 
uaz158(alt) 137 r803 
uaz159 137 r803 
uaz161 a(elf) 138 r803 
uaz161b(elf) 139 r803 
uaz161d(elf) 137 r803 
uaz161e(elf) 137 r803 
uaz166c 139 r973 
uaz171 137 r803 
uaz184(hfi) 137 r803 
uaz185(zp22) 137 

r803 
uaz186 137 r803 
uaz189(rpl5) 137 

r803 
uaz190(gpc) 138 r803 
uaz191 (rap) 136 r803 
uaz193(rip) 138 r803 
uaz194a(ugu) 136 

r803 
uaz194b(ugu) 136 

r803 
uaz195(ms) 137 r803 
uaz197a(cdpk) 138 

r803 
uaz197b(cdpk) 138 

r803 
uaz198a(rpl 10) 137 

r803 
uaz201 (tua) 137 r803 
uaz205a(hsp18) 137 

r803 
uaz205b(hsp18) 136 

r803 
uaz206(uce) 138 r803 
uaz208(mta) 136 r803 
uaz210(hsp18) 137 

r803 
uaz215a(odo) 137 

r803 
uaz215b(odo) 137 

r803 
uaz218a(gss) 137 

r803 
uaz218b(gss) 137 

r803 
uaz219(hsp) 137 r803 
uaz220(elf) 138 r803 
uaz221 (his2a) 138 

r803 
uaz222 137 r803 
uaz223(vpp) 139 

r803 
uaz224(eif2) 138 r803 
uaz225(1ox) 138 r803 
uaz226(cat1) 137 

r803 
uaz227(end) 138 r803 
uaz228a(his2b) 136 

r803 
uaz228b(his2b) 139 

r803 
uaz228c(his2b) 137 

r803 
uaz228d(his2b) 136 

r803 
uaz230 115 
uaz230c 138 
uaz231 (zag) 139 r803 
uaz232(sci) 136 r803 
uaz233a(act) 138 

r803 
uaz233b(act) 138 

r803 
uaz233c(act) 138 

r803 
uaz233d(act) 138 

r803 
uaz235(px) 136 r803 
uaz236a(ser) 139 

r803 
uaz236b(ser) 136 

r803 
uaz237a(ser) 139 

r803 
uaz237b(prc) 138 

r803 
uaz238(ppi) 137 r803 
uaz242(clp) 139 r803 
uaz243a(atp) 137 

r803 
uaz243b(atp) 138 

r803 
uaz243c(atp) 138 

r803 
uaz244a(prh) 138 

r803 
uaz244b(prh) 138 

r803 
uaz245(gbp) 138 

r803 
uaz246(vsp) 137 r803 
uaz247(ubi) 137 r803 
uaz248a(his3) 136 

r803 
uaz248b(his3) 137 

r803 
uaz249a(ubf9) 136 

r803 
uaz249b(ubf9) 137 

r803 
uaz249c(ubf9) 138 

r803 
uaz249d(ubf9) 138 

r803 
uaz250(nac) 139 
uaz252a(ptk) 137 

r803 
uaz252b(ptk) 138 

r803 
uaz265a(sbe) 136 

r803 
uaz265b(sbe) 138 

r803 
uaz269a(kri) 138 r803 
uaz269b(kri) 136 r803 
uaz269c(kri) 138 r803 
uaz269d(kri) 138 r803 
uaz272(zp19) 136 

r803 
uaz280a(ppp) 137 

r803 
uaz280b(ppp) 139 

r803 
uaz282(pop) 136 

r803 
uaz284 r973 
ub1 68 
UBC281-900 24 25 

138 
UBC425-700 24 25 

138 
ubi1 r863 
Ufo 7 
uiu4(pog1 c) r436 
umc1 51 
umc3 25 
umc4a 50 52 136 
umc5a r612 
umc5b 50 51138 
umc6 2 136 r781 
umc7 50 51 52 138 
umc10a 50 51 137 

r738 r769 
umc13 52 
umc14b r738 
umc15a 30 52 137 

r714 
umc16 25 
umc16a 51 
umc18 25137 
umc18a 50 52 136 

137 r214 r769 
umc19 30 
umc20 r436 
umc21 50 51 52 138 

r714 r738 
umc26a 50 51 52 136 

137 r769 
umc27a 52 
umc28 138 r503 r774 
umc29a 50 
umc29c 52 
umc29d 136 137 
umc30a 53 
umc31 49 
umc31a 50 51 137 

r155 
umc32a 52 
umc32c(cgn) 136 

r505 
umc33a 136 r513 

r684 
umc34 2 50 51 52136 
umc35 50 51 52 138 

r190 r537 
umc36 25 
umc36a 69 136 r860 
umc36b 25 50 51 62 

63136 
umc36c r860 
umc37 a 50 52 136 

r513 r684 
umc38a 51 r774 
umc39c 138 r714 

umc42a 52 
umc43 51 
umc44a 50 51139 
umc44b 51136 r714 
umc46 52 
umc47 137 r928 
umc48 138 
umc48a 50 52 
umc49 69 
umc49a 51 69 136 

r860 
umc49d 50 51 137 
umc50 24 25 137 

r860 
umc51a 50 52137 
umc53a(gag) 50 51 

52 136 r199 
umc55a r612 r613 
umc56 50 53 138 
umc58 51 70 136 137 

138 
umc59 25 
umc59a 24 138 r813 

r860 
umc60 2551137 r214 

r714 
umc62 50 51 52 138 

r503 r513 r684 
r738 

umc63a 51 
umc64 50 51 52 139 
umc65 70138 
umc65a 50 51 52 70 

138 r17 r738 
umc65d 70 138 
umc66a 50 51 137 

r738 
umc67 51 
umc68 50 52 53 137 
umc71a 138 r774 
umc72a 52 r738 
umc76(gne) 50 51136 
umc78 52 
umc81 50 51 139 r973 
umc85 50 51138 r738 

r813 
umc86a 52 
umc89a 50 51 138 

r751 
umc89b 136 r714 
umc92a 137 r769 
umc92b 50 51138 
umc94a 52 
umc95 50 51 139 
umc98a 50 52 136 
umc98b 50 138 
umc102 50 51 137 

r769 
umc103a 52 
umc104b 53 
umc105a 18 50 51139 
umc106a 136 r714 
umc107a 50 51 136 
umc107b 50 51137 
umc108 50 51137 
umc109 18 51 

umc110a 51 52 
umc111a 5052137 
umc113a 50 51139 
umc113b 25 
umc114 52 139 r513 

r684 
umc116a 51138 r781 
umc120a 50 51138 
umc121 51 52 
umc123 50 51137 
umc124 50 51138 
umc126a 50 51137 
umc128(aga) 50 51 

136 r714 
umc130(ntc) 50 51 

139 
umc131(pext) 2 50 51 

52 136 
umc132a 50 51138 
umc134b 136 r511 
umc137a 136 r714 
umc138 r774 
umc139 r612 r613 
umc147a 50 51137 
umc153 50 52139 
umc157(chn) 50 51 52 

136 
umc158 30 137 
umc161a 51 
umc161b 137 r769 
umc164c 52 
umc165a 52 
umc165b 52 
umc166a 51 52 
umc167b 51 
umc168 50 51138 
umc169 50 51137 
umc175 50 52 136 

137 
umc191 (gpc1) r613 
umc201 (nr) r613 
urf13(mt) 133 
urf13(mtT) r516 r728 

r739 r812 
urf25(mt) 133 
urf156(mt) 133 
uwo3 137 r525 
uwo8 137 r525 
v28 139 r907 
va1 44 
vg1 43 
Vg1-R 15 
vp1 20 42 43 137 r53 

r93 r291 r359 r581 
r918 r950 

vp1-mum2 r359 
vp2 44 r66 r291 r532 

r581 
vp5 1419 43 136 r291 

r327 r359 r581 
r800 

vp8 43 r66 r291 r581 
vp9 15 44 r291 r581 
vp10 r581 
vp13 139 r581 
w3 r66 r581 r633 

175 



w15 138 r121 
whp1 19 24 25 136 

r701 
wi1 44 
wi4 44 
wrp1 43 
wsm1 138 r589 
wsm2 137 r589 
wsm3 139 r589 
wx1 14 18 27 40 50 51 

65 66 116 139 r5 
r42 r630 r647 
r825 r844 r907 
r973 r1006 

wx1-b4 54 
wx1-K::Hopscotch 

r954 
wx1-m5 54 
wx1-m7::Ac7 r594 
wx1-m9::Ac 47 
wx1-m9::Ds-cy 47 
xet1 138 r757 
y1 5 31138 r121 r813 
y1-8549 32 
y1-lem 32 
y1-m261 ::dSpm 66 
y1-stand 32 
y1-wmut 32 
y3 43 
y9 44 r581 
ycf3(cp) 141 r561 
yd2 43 
yg2 27 44 
ys1 r932 
z1 c(zp22) 49 137 r155 
zag1 43 44 r20 r606 
zag2 43 
zag2a 43 
zag3 43 
zag4a 43 
zag4c 43 
zag5 44 
zag6b 43 
zap1 43 
zein 64 
zeinA(22/6) 49 
zeinB(22.8) 49 
zem 1 140 r606 
Zem1-A69Y r606 
Zem1-X91882 r606 
Zeon1 140 r373 
zlp1 140 r563 
ZLRS 140 r14 
zmhox1a 44 
zmhox2 44 
zmm1 44 
zmm2 44 
zmm3 44 
zmm4 43 
zmm6 43 
zmm7 44 
zmm8 44 
zp15* r702 
zp19/22(pms2) 50113 

137 
zp19/22*-X02450 
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r548 
zp19/22cluster2 137 

r548 
zp22(zA1) r548 
zp22.1 50 113137 
zp27 r507 
zp27cluster r702 
zpl1 49 
zrp3 r942 
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r951 

White, DG r117 r131 
r132 r165 

White, GA r952 
White, P r133 r134 

r135 r226 r227 
r700 r953 

White, PR r330 
White, S r954 
White, W r970 
Wicks, Z,11 r955 
Wicks, ZW r715 r716 
Widholm, JM 57* r63 

r939 r940 r981 
Widstrom, NW 18* r317 

r830 r956 
Wiebold, WJ r4 r5 
Wienand; U 25* 
Wiermann, R r969 
Wilford, J r957 
Wilhelm, E r958 
Wilhelm, W r959 
Wilkes, HG r960 r961 

r962 r963 r964 
r965 

Willadino, L r97 
Willeford, KO r396 
Willetts, NG r426 
Williams, CM r1002 
Williams, G r426 
Williams, ME r156 
Williams, WP r194 r396 

r966 r967 r970 
r972 

Williamson, G r840 
Williamson, JD r968 
Williamson, R r59 
Willmott, RL 17* 
Wilmesmeier, S r969 
Wilson, AC 37 
Wilson, OM r956 
Wilson, HM r271 
Wilson, K r586 
Wilson, RH r794 
Wilson, RL r3 r970 

r971 
Winberg, B r636 
Windham, GL r972 
Wingender, R r937 
Winkler, RG 63* r889 

r973 
Wiseman, BR 18* r830 

r970 r971 r97 4 
Wissemeier, A r530 
Woloshuk, C r117 
Wolpert 15 
Wolstenholme, D r878 

r975 
Wong, AD r976 r977 
Wood, AJ r986 
Wood, KV r986 
Woronecki, P r218 
Worrall, D r978 
Wray, V r455 
Wright, AD r331 r979 

r980 
Wrobel, R r101 

Wu, S r981 
Wu, VJ r800 
Wurtele, ES r942 
Xiao, B r982 
Xiao, J r898 
Xie, Y 13* r941 
Xu, J r983 
Xu, Q r808 
Yamaguchi, J r436 
Yamamoto, R r372 
Yamashita, M r372 
Yamato, K r636 
Yanagisawa, S 24 r984 
Yang, C r852 r985 
Yang, W r766 r986 
Yano, M r987 
Yao, a r517 
Yasrebi, J r421 
Yazlovitskaya, L r930 
Ye, S 12* 
Yelle, S r90 
Yen, L r988 
Yermak, M r487 
Yglesias, ES r907 
Young, ND r102 
Yu, Z r991 
Yunes, JA r631 
Yurkonene, S r62 
Yusop, M r762 
Zabala, G r280 
Zabrodina, M r443 

r444 
Zabrodina, MV 42* 
Zachwieja, S r426 
Zaharieva, M r919 
Zamski, E r989 
Zandomeni, K r990 
Zarkadas, C r991 
Zehr, BE r143 r992 

r993 r994 r995 
Zeng, M 12* 
Zeng, MQ r527 r808 

r996 r997 r998 
Zeng, Z r999 r1000 
Zettl, R r252 
Zhang, DZ r323 
Zhang, F r1001 
Zhang, G r1002 
Zhang, H r941 
Zhang, J r1003 r1004 

1006 
Zhang, J-L r526 
Zhang, JH r1005 
Zhang, L r781 
Zhang, MD r115 
Zhang, N r767 
Zhang, P 7* 
Zhang, S r913 r914 

r915 
Zhang, XH 3• 
Zhang, Y r417 
Zhang,Z r1006 
Zhdanova, N r219 
Zheng, D r189 
Zheng, Y 26* 27* 28* 
Zheng, YL 69* 

Zhmareva, E r811 
Zhmurko, M r487 
Zhou, X r767 
Zhu, D r1007 
Zhu, X r281 
Zhuge, a r159 
Zhurba, G r259 
Ziegler, KE r1008 
Zieschang, H r55 
Zinselmeier, C r1009 

r1010 
Zivy, M r888 
Zoltan, P r695 
Zon, J r300 
Zorec, R r874 
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CLONE DESIGNATION: 

CLONE INFORMATION SHEET (PLEASE SUPPLY FOR EACH CLONE) 

ISOLATING LAB/PERSON: 

IS THIS A KNOWN SEQUENCE CLONE (circle one)? Yes No GENE SYMBOL: 

WHAT PRODUCT OR FUNCTION? 

PRODUCT ACRONYM: EC NO.: 

CLONE TYPE (genomic, cDNA, etc.): ISOLATED FROM WHAT ORGANISM: 

REFERENCE: 

GENBANK, EMBL, EST, SWISSPROT NOS. : 

SOUTHERN BLOT INFORMATION 

LINE ANALYZED ENZYME($) TRIED # BANDS SEEN 

NORTHERN BLOT INFORMATION 

TISSUE(S) CONDITION(S) # BANDS SEEN 

CHROMOSOME ARM, IF KNOWN: 
NEAREST MARKERS, IF KNOWN: 

APPROX. MW 

APPROX. MW 

If you already have map information for this clone, please submit mapscores and mapping population information in typed or 
electronic format with this form for inclusion in the Maize Genome Database. 

IT IS OPTIMAL FOR US TO RECEIVE A STAB (ELSE 10µg OF DRIED PLASMID WOULD BE ACCCEPTABLE). 

HOST OF SUPPLIED ST AB CULTURE: AMT. OF PURIFIED PLASMID: 

VECTOR: SELECTIVE AGENT: 

ENZYME($) TO CUT OUT INSERT: INSERT SIZE: 

CAN THE INSERT BY PCR'D? Yes No PRIMER SEQUENCE: 

SPECIAL CONDITIONS NEEDED FOR PCR: 

MAY WE FREELY DISTRIBUTE THIS CLONE NOW? Yes No 
AFTER PUBLICATION OR ONE YEAR? Yes No 

CONT ACT PERSON REGARDING CLONE: 

NAME: 

ADDRESS: 

PHONE: 

E-MAIL: 

SEND CLONES AND INFORMATION TO: 
MS THERESA MUSKET 
302 CURTIS HALL 
UNIVERSITY OF MISSOURI 
COLUMBIA, MISSOURI 65211 

FAX: 

PHONE: 573/882-2033 
FAX: 573/884-7850 

EMAIL: MUSKET@teosinte.agron.missouri.edu 



July, 1996 

SUBSCRIPTION AND INFORMATION FORM 
MAIZE GENETICS COOPERATION NEWSLETTER and MAIZE GENOME DATABASE 

Please complete both sides and return. Your cooperation in providing this information is needed, whether you subscribe to the Maize 
Newsletter or not, to keep the database and mailing lists current. Phone, FAX, and E-MAIL addresses are particular aids to Cooperation 
today. 

Subscription has been increased because of increased costs, and may be paid as follows: 

(mark) Non-student Student Adviso(s Signature 
1997 issue 12.00 6.00 ................................... 
1998 issue 12.00 6.00 ................................... 
1999issue 12.00 6.00 ··································· 
2000issue 12.00 6.00 ................................... 
2001 issue 12.00 6.00 •••••• •••••••••nu ,1100,, ,,,,, ,, ,, 

Airmail costs to addresses outside the U.S. have increased substantlally; if you wish to receive the Newsletter by airmail, please add 
$10.00 per issue. 

Most back issues are available at $3.00 each; students or teachers should inquire for specific needs. 
A microfilm of Nos. 1-29 and 33 is available at $15.00. 

Payment is required in U.S. funds: By check drawn on a U.S. bank; or by instruments such as postal money orders or Eurochecks made out 
to Maize Genetics; or by bank transfer to account 0102013147, bank 80-86/815; or by credit card with the following information: 

Name of card holder ....................................................... Discover or Visa or MasterCard? ............. . 

Address of card holder .............................................................................................. . 

.................................................................................... Phone .................................................. .. 

Account No .................................................................. Exp. Date ............. : ................................ .. 

Signature ....................................................... .. 

Amount enclosed or to be charged: $ _____ _ 

I request Relief from Subscription Fee as Follows (mark): 

Financial or Exchange Limitations .......... . Public Library, Cannot Afford ......... 

Please provide your address, phone, FAX, and E-MAIL (please type or print carefully), and other information requested on the reverse. 

NAME: 

ADDRESS: 

PHONE: 

FAX: 

EMAIL: 



Please identify (mark) whether you wish: 
To receive the annual "Call and Deadline' for notes for Maize Newsletter: yes...... no .... .. 
To receive the annual Notice for the Maize Genetics Conference: yes...... no .... .. 
To receive a diskette, annually, of selected parts of MNL issues: yes...... no .... .. 

(Available only to Lifetime contributors to the Endowment Fund--please see below; specify whether you need a 3" or 5' disk; MS-DOS or 
Mac; and Microsoft Word, Word Perfect, or ASCII) 

Please identify yourself as follows (mark): 
Individual subscriber: yes ..... no .... . 

Research scientist: yes ..... no .... . 
Teacher: yes ..... no .... . 

Corporate research group: yes ..... no .... . 
Public library subscriber: yes ..... no .... . 
Private library subscriber: yes ..... no .... . 
Other subscriber (Please list) yes..... no ... .. 

Interests (please circle): 

Genome/Mapping 
genie 
molecular 
cytogenetics 
molec. cytology 
evolution 
fine structure 
QTLs 

Genetic Manipulation 
cloning/sequencing 
transposable elements 
transposon tagging 
regulation/expression 
transformation 

Germplasm 

Breeding/Selection 
field corn 
sweetcorn 
industrial 
food corn 

Physiology 
Stress 
Pests/Diseases 

Biochemistry 
photosynthesis 
growth regulators 
flavonoids 
carotenoids 
storage proteins 
carbohydrates 
oil content 

Development/Biology 
cell biology 
cell cycle/kinetics 
reproductive biol. 
meiosis 
life cycle 

Other .................. .. 

The Endowment Fund, established with contributions from individuals, corporations and other institutions, underwrites distribution of the 
Newsletter to deserving institutions and libraries (e.g., in public or Third World institutions) and reduces annual subscription fees to the 
extent possible. One special way to support the Newsletter some Cooperators have taken, and you may wish to consider, is a gift Lifetime 
Subscription to a student, postdoc, or technician. Corporate donations have been particularly helpful to date, and continue to be solicited. 

Your Gift to the Maize Genetics Newsletter Endowment (confers Lifetime Subscription ; donors will be acknowledged in the Newsletter): 

Kernel Endowment 

Ear Endowment 

Whole Plant Endowment 

Nursery Patron 

Hectare Patron 

$ 150.00 

250.00 

1000.00 

5000.00 

10000.00 

Donor name as you wish it to be listed (professional titles will not be used; corporate or institutional donors may add the name of an 
individual in parentheses if desired): 



This is an informal newsletter by which working research information on the genetics and cytogenetics of maize is shared. The information 
and data are shared by Cooperators with the understanding that they will not be used in publications without their specific consent. 

Notes for the 1997 Maize Genetics Cooperation Newsletter need to be in the editor's hands by January 1. Be concise, not formal, but 
include specific data, tables, observations and methods. A double-spaced, letter-quality copy of your text is needed. Please follow the 
simple style used in this issue (title; authors; use minimal citations in text but list citations of the references). Whenever possible send an 
electronic version on 3-1/2 or 5-1/4 floppy disk, identifying the operating system (e.g., MS-DOS) and the word processor (e.g., 
Microsoft Word). Figures, charts and tables should be compact and camera-ready, and provided in electronic form if possible. Please use 
tabs instead of spaces to separate columns in tables. Send your submissions to E. H. Coe, Jr., 210 Curtis Hall, University of Missouri, 
Columbia, MO 65211; email: ed@teosinte.agron.Missouri.edu. Submission by email is acceptable, but not preferred. 

Subscription information is provided on the form included in this issue, or can be requested from the editor (address and email above). 

Author and Name Indexes (and see MaizeDB) 
Nos. 3 through 43 
Nos. 44 through 50 
Nos. 51 to date 

Symbol Indexes (and see MaizeDB) 
Nos. 12 through 35 
Nos. 36 through 53 
Nos. 54 to date 

Stock Catalogs 
Marker Stocks 
Translocations 

Rules of Nomenclature (1995) 

Cytogenetic Working Maps 
Gene List 
Clone List 
Working Linkage Maps 
Plastid Genetic Map 
Mitochondrial Genetic Maps 

Cooperators (that means you) need the Stock Center. 
The Stock Center needs Cooperators (this means you) to: 

Appendix to MNL 44, 1970 (copies available) 
MNL 50 
Annual in each issue 

Appendix to MNL 36, 1962 (copies available) 
MNL53 
Annual in each issue 

In this issue and MaizeDB 
MNL 55 and MaizeDB 

MNL69 and MaizeDB 

MNL 52:129-145; 59:159; 60:149 and MaizeDB 
MNL69 (supplement in this issue) and MaizeDB 
MNL 65:106; 65:145, this issue and MaizeDB 
In this issue and MaizeDB 
MNL 69 and MaizeDB 
In this issue and MaizeDB 

(1) Send stocks of new factors you have reported in this Newsletter or in publications, and stocks of new combinations, to the 
collection. 

(2) Inform the Stock Center on your experience with materials received from the collection. 

(3) Acknowledge the source of the stocks for research when you publish, and advice or help you have received in development of your 
research project. 

MaizeDB needs Cooperators (this means you) to: 

(1) Look at the entries in MaizeDB (see section IX in this Newsletter) for "your favorite genes" and send refinements and updates to 
maryp@teosinte.agron.missouri.edu. 

(2) Compile and provide mapping data in full, including the ordered array of map scores for molecular markers or counts by 
phenotypic classes; recombination percentage and standard error. 

(3) Probe or primer information per the information sheet in the back of this issue; fingerprint data indicating enzyme and fragment 
sizes and defining mapped as well as unmapped fragments. 

Cooperators, Clone Home! Each functionally defined clone enhances the map, and mapping information enhances further exploration of the 
function. Your clone is wanted; please see Section VIII, p. 118, and the information sheet in the back of this issue. 



. I . 
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